These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33848231)

  • 1. Predictive performance of machine and statistical learning methods: Impact of data-generating processes on external validity in the "large N, small p" setting.
    Austin PC; Harrell FE; Steyerberg EW
    Stat Methods Med Res; 2021 Jun; 30(6):1465-1483. PubMed ID: 33848231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical analyses and simulations showed that different machine and statistical learning methods had differing performance for predicting blood pressure.
    Austin PC; Harrell FE; Lee DS; Steyerberg EW
    Sci Rep; 2022 Jun; 12(1):9312. PubMed ID: 35660759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models.
    Wang M; Greenberg M; Forkert ND; Chekouo T; Afriyie G; Ismail Z; Smith EE; Sajobi TT
    BMC Med Res Methodol; 2022 Nov; 22(1):284. PubMed ID: 36324086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data.
    Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A
    J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive Abilities of Machine Learning Techniques May Be Limited by Dataset Characteristics: Insights From the UNOS Database.
    Miller PE; Pawar S; Vaccaro B; McCullough M; Rao P; Ghosh R; Warier P; Desai NR; Ahmad T
    J Card Fail; 2019 Jun; 25(6):479-483. PubMed ID: 30738152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention.
    Zack CJ; Senecal C; Kinar Y; Metzger Y; Bar-Sinai Y; Widmer RJ; Lennon R; Singh M; Bell MR; Lerman A; Gulati R
    JACC Cardiovasc Interv; 2019 Jul; 12(14):1304-1311. PubMed ID: 31255564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality.
    Shin S; Austin PC; Ross HJ; Abdel-Qadir H; Freitas C; Tomlinson G; Chicco D; Mahendiran M; Lawler PR; Billia F; Gramolini A; Epelman S; Wang B; Lee DS
    ESC Heart Fail; 2021 Feb; 8(1):106-115. PubMed ID: 33205591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches.
    Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK
    JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Machine Learning Techniques for Heart Failure Readmissions.
    Mortazavi BJ; Downing NS; Bucholz EM; Dharmarajan K; Manhapra A; Li SX; Negahban SN; Krumholz HM
    Circ Cardiovasc Qual Outcomes; 2016 Nov; 9(6):629-640. PubMed ID: 28263938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury.
    Gravesteijn BY; Nieboer D; Ercole A; Lingsma HF; Nelson D; van Calster B; Steyerberg EW;
    J Clin Epidemiol; 2020 Jun; 122():95-107. PubMed ID: 32201256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting hospital and emergency department utilization among community-dwelling older adults: Statistical and machine learning approaches.
    Jones A; Costa AP; Pesevski A; McNicholas PD
    PLoS One; 2018; 13(11):e0206662. PubMed ID: 30383850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using machine learning to improve risk prediction in durable left ventricular assist devices.
    Kilic A; Dochtermann D; Padman R; Miller JK; Dubrawski A
    PLoS One; 2021; 16(3):e0247866. PubMed ID: 33690687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical models versus machine learning for competing risks: development and validation of prognostic models.
    Kantidakis G; Putter H; Litière S; Fiocco M
    BMC Med Res Methodol; 2023 Feb; 23(1):51. PubMed ID: 36829145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of machine learning and the regression-based EHMRG model for predicting early mortality in acute heart failure.
    Austin DE; Lee DS; Wang CX; Ma S; Wang X; Porter J; Wang B
    Int J Cardiol; 2022 Oct; 365():78-84. PubMed ID: 35868354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting cow milk quality traits from routinely available milk spectra using statistical machine learning methods.
    Frizzarin M; Gormley IC; Berry DP; Murphy TB; Casa A; Lynch A; McParland S
    J Dairy Sci; 2021 Jul; 104(7):7438-7447. PubMed ID: 33865578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Machine Learning Algorithms for Predicting Readmission After Acute Myocardial Infarction Using Routinely Collected Clinical Data.
    Gupta S; Ko DT; Azizi P; Bouadjenek MR; Koh M; Chong A; Austin PC; Sanner S
    Can J Cardiol; 2020 Jun; 36(6):878-885. PubMed ID: 32204950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions.
    Lo-Ciganic WH; Huang JL; Zhang HH; Weiss JC; Wu Y; Kwoh CK; Donohue JM; Cochran G; Gordon AJ; Malone DC; Kuza CC; Gellad WF
    JAMA Netw Open; 2019 Mar; 2(3):e190968. PubMed ID: 30901048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Machine Learning Methods With National Cardiovascular Data Registry Models for Prediction of Risk of Bleeding After Percutaneous Coronary Intervention.
    Mortazavi BJ; Bucholz EM; Desai NR; Huang C; Curtis JP; Masoudi FA; Shaw RE; Negahban SN; Krumholz HM
    JAMA Netw Open; 2019 Jul; 2(7):e196835. PubMed ID: 31290991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Logistic regression and machine learning predicted patient mortality from large sets of diagnosis codes comparably.
    Cowling TE; Cromwell DA; Bellot A; Sharples LD; van der Meulen J
    J Clin Epidemiol; 2021 May; 133():43-52. PubMed ID: 33359319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.