These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 33848419)
1. Mobile Protons Limit the Stability of Salt Bridges in the Gas Phase: Implications for the Structures of Electrosprayed Protein Ions. Konermann L; Aliyari E; Lee JH J Phys Chem B; 2021 Apr; 125(15):3803-3814. PubMed ID: 33848419 [TBL] [Abstract][Full Text] [Related]
2. Collision-Induced Dissociation of Electrosprayed Protein Complexes: An All-Atom Molecular Dynamics Model with Mobile Protons. Popa V; Trecroce DA; McAllister RG; Konermann L J Phys Chem B; 2016 Jun; 120(23):5114-24. PubMed ID: 27218677 [TBL] [Abstract][Full Text] [Related]
3. Protein Ions Generated by Native Electrospray Ionization: Comparison of Gas Phase, Solution, and Crystal Structures. Bakhtiari M; Konermann L J Phys Chem B; 2019 Feb; 123(8):1784-1796. PubMed ID: 30724571 [TBL] [Abstract][Full Text] [Related]
4. Using Density Functional Theory for Testing the Robustness of Mobile-Proton Molecular Dynamics Simulations on Electrosprayed Ions: Structural Implications for Gaseous Proteins. Moore CC; Staroverov VN; Konermann L J Phys Chem B; 2023 May; 127(18):4061-4071. PubMed ID: 37116098 [TBL] [Abstract][Full Text] [Related]
5. Molecular Dynamics Simulations on Gas-Phase Proteins with Mobile Protons: Inclusion of All-Atom Charge Solvation. Konermann L J Phys Chem B; 2017 Aug; 121(34):8102-8112. PubMed ID: 28776996 [TBL] [Abstract][Full Text] [Related]
6. Gas Phase Protein Folding Triggered by Proton Stripping Generates Inside-Out Structures: A Molecular Dynamics Simulation Study. Sever AIM; Konermann L J Phys Chem B; 2020 May; 124(18):3667-3677. PubMed ID: 32290651 [TBL] [Abstract][Full Text] [Related]
7. Testing the Robustness of Solution Force Fields for MD Simulations on Gaseous Protein Ions. Lee JH; Pollert K; Konermann L J Phys Chem B; 2019 Aug; 123(31):6705-6715. PubMed ID: 31306020 [TBL] [Abstract][Full Text] [Related]
8. Exploring salt bridge structures of gas-phase protein ions using multiple stages of electron transfer and collision induced dissociation. Zhang Z; Browne SJ; Vachet RW J Am Soc Mass Spectrom; 2014 Apr; 25(4):604-13. PubMed ID: 24496600 [TBL] [Abstract][Full Text] [Related]
9. Effects of Multidentate Metal Interactions on the Structure of Collisionally Activated Proteins: Insights from Ion Mobility Spectrometry and Molecular Dynamics Simulations. Bartman CE; Metwally H; Konermann L Anal Chem; 2016 Jul; 88(13):6905-13. PubMed ID: 27292276 [TBL] [Abstract][Full Text] [Related]
10. How to run molecular dynamics simulations on electrospray droplets and gas phase proteins: Basic guidelines and selected applications. Konermann L; Metwally H; McAllister RG; Popa V Methods; 2018 Jul; 144():104-112. PubMed ID: 29678588 [TBL] [Abstract][Full Text] [Related]
11. Understanding antibody-antigen associations by molecular dynamics simulations: detection of important intra- and inter-molecular salt bridges. Sinha N; Li Y; Lipschultz CA; Smith-Gill SJ Cell Biochem Biophys; 2007; 47(3):361-75. PubMed ID: 17652781 [TBL] [Abstract][Full Text] [Related]
12. Gas-Phase Protein Salt Bridge Stabilities from Collisional Activation and Electron Transfer Dissociation. Zhang Z; Vachet RW Int J Mass Spectrom; 2017 Sep; 420():51-56. PubMed ID: 29056866 [TBL] [Abstract][Full Text] [Related]
13. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons. Bythell BJ; Suhai S; Somogyi A; Paizs B J Am Chem Soc; 2009 Oct; 131(39):14057-65. PubMed ID: 19746933 [TBL] [Abstract][Full Text] [Related]
14. Peptide salt bridge stability: from gas phase via microhydration to bulk water simulations. Pluhařová E; Marsalek O; Schmidt B; Jungwirth P J Chem Phys; 2012 Nov; 137(18):185101. PubMed ID: 23163393 [TBL] [Abstract][Full Text] [Related]
15. Evidence of turn and salt bridge contributions to beta-hairpin stability: MD simulations of C-terminal fragment from the B1 domain of protein G. Tsai J; Levitt M Biophys Chem; 2002 Dec; 101-102():187-201. PubMed ID: 12488000 [TBL] [Abstract][Full Text] [Related]
16. Rapid Determination of Activation Energies for Gas-Phase Protein Unfolding and Dissociation in a Q-IM-ToF Mass Spectrometer. Donor MT; Shepherd SO; Prell JS J Am Soc Mass Spectrom; 2020 Mar; 31(3):602-610. PubMed ID: 32126776 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics simulations of electrosprayed water nanodroplets: internal potential gradients, location of excess charge centers, and "hopping" protons. Ahadi E; Konermann L J Phys Chem B; 2009 May; 113(20):7071-80. PubMed ID: 19388688 [TBL] [Abstract][Full Text] [Related]
18. The structure and IR signatures of the arginine-glutamate salt bridge. Insights from the classical MD simulations. Vener MV; Odinokov AV; Wehmeyer C; Sebastiani D J Chem Phys; 2015 Jun; 142(21):215106. PubMed ID: 26049530 [TBL] [Abstract][Full Text] [Related]
19. Salt-bridge dynamics in intrinsically disordered proteins: A trade-off between electrostatic interactions and structural flexibility. Basu S; Biswas P Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):624-641. PubMed ID: 29548979 [TBL] [Abstract][Full Text] [Related]
20. Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions. Zuegg J; Gready JE Biochemistry; 1999 Oct; 38(42):13862-76. PubMed ID: 10529232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]