These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33848486)

  • 21. The ventral hippocampus is involved in multi-goal obstacle-rich spatial navigation.
    Contreras M; Pelc T; Llofriu M; Weitzenfeld A; Fellous JM
    Hippocampus; 2018 Dec; 28(12):853-866. PubMed ID: 30067283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomimetic FPGA-based spatial navigation model with grid cells and place cells.
    Krishna A; Mittal D; Virupaksha SG; Nair AR; Narayanan R; Thakur CS
    Neural Netw; 2021 Jul; 139():45-63. PubMed ID: 33677378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the Value of Reptilian Brains to Map the Evolution of the Hippocampal Formation.
    Reiter S; Liaw HP; Yamawaki TM; Naumann RK; Laurent G
    Brain Behav Evol; 2017; 90(1):41-52. PubMed ID: 28866680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human aging alters the neural computation and representation of space.
    Schuck NW; Doeller CF; Polk TA; Lindenberger U; Li SC
    Neuroimage; 2015 Aug; 117():141-50. PubMed ID: 26003855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Place cell firing cannot support navigation without intact septal circuits.
    Bolding KA; Ferbinteanu J; Fox SE; Muller RU
    Hippocampus; 2020 Mar; 30(3):175-191. PubMed ID: 31301167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit.
    Aronov D; Nevers R; Tank DW
    Nature; 2017 Mar; 543(7647):719-722. PubMed ID: 28358077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Navigating with grid and place cells in cluttered environments.
    Edvardsen V; Bicanski A; Burgess N
    Hippocampus; 2020 Mar; 30(3):220-232. PubMed ID: 31408264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-world navigation in amnestic mild cognitive impairment: The relation to visuospatial memory and volume of hippocampal subregions.
    Peter J; Sandkamp R; Minkova L; Schumacher LV; Kaller CP; Abdulkadir A; Klöppel S
    Neuropsychologia; 2018 Jan; 109():86-94. PubMed ID: 29237555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mental replays enable flexible navigation.
    Epsztein J
    Nature; 2022 May; 605(7908):35-36. PubMed ID: 35422460
    [No Abstract]   [Full Text] [Related]  

  • 30. Hippocampal Place Fields Maintain a Coherent and Flexible Map across Long Timescales.
    Kinsky NR; Sullivan DW; Mau W; Hasselmo ME; Eichenbaum HB
    Curr Biol; 2018 Nov; 28(22):3578-3588.e6. PubMed ID: 30393037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurobiological successor features for spatial navigation.
    de Cothi W; Barry C
    Hippocampus; 2020 Dec; 30(12):1347-1355. PubMed ID: 32584491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissociation of spatial memory systems in Williams syndrome.
    Bostelmann M; Fragnière E; Costanzo F; Di Vara S; Menghini D; Vicari S; Lavenex P; Lavenex PB
    Hippocampus; 2017 Nov; 27(11):1192-1203. PubMed ID: 28710800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple Scales of Representation along the Hippocampal Anteroposterior Axis in Humans.
    Brunec IK; Bellana B; Ozubko JD; Man V; Robin J; Liu ZX; Grady C; Rosenbaum RS; Winocur G; Barense MD; Moscovitch M
    Curr Biol; 2018 Jul; 28(13):2129-2135.e6. PubMed ID: 29937352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dopamine modulation of spatial navigation memory in Parkinson's disease.
    Thurm F; Schuck NW; Fauser M; Doeller CF; Stankevich Y; Evens R; Riedel O; Storch A; Lueken U; Li SC
    Neurobiol Aging; 2016 Feb; 38():93-103. PubMed ID: 26827647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing subthreshold dynamics of hippocampal neurons by pulsed optogenetics.
    Valero M; Zutshi I; Yoon E; Buzsáki G
    Science; 2022 Feb; 375(6580):570-574. PubMed ID: 35113721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Role for the Locus Coeruleus in Hippocampal CA1 Place Cell Reorganization during Spatial Reward Learning.
    Kaufman AM; Geiller T; Losonczy A
    Neuron; 2020 Mar; 105(6):1018-1026.e4. PubMed ID: 31980319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Olfactory landmarks and path integration converge to form a cognitive spatial map.
    Fischler-Ruiz W; Clark DG; Joshi NR; Devi-Chou V; Kitch L; Schnitzer M; Abbott LF; Axel R
    Neuron; 2021 Dec; 109(24):4036-4049.e5. PubMed ID: 34710366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneous representations in the hippocampus.
    Tanaka KZ
    Neurosci Res; 2021 Apr; 165():1-5. PubMed ID: 32445753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circadian time-place (or time-route) learning in rats with hippocampal lesions.
    Cole E; Mistlberger RE; Merza D; Trigiani LJ; Madularu D; Simundic A; Mumby DG
    Neurobiol Learn Mem; 2016 Dec; 136():236-243. PubMed ID: 27622983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Habitual use of GPS negatively impacts spatial memory during self-guided navigation.
    Dahmani L; Bohbot VD
    Sci Rep; 2020 Apr; 10(1):6310. PubMed ID: 32286340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.