These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33848864)

  • 1. Nighttime warming alleviates the incidence of juniper forest growth decline on the Tibetan Plateau.
    Mu YM; Fang O; Lyu L
    Sci Total Environ; 2021 Aug; 782():146924. PubMed ID: 33848864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-linear modelling reveals a predominant moisture limit on juniper growth across the southern Tibetan Plateau.
    Jia H; Fang O; Lyu L
    Ann Bot; 2022 Jul; 130(1):85-95. PubMed ID: 35608820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tree resilience to drought increases in the Tibetan Plateau.
    Fang O; Zhang QB
    Glob Chang Biol; 2019 Jan; 25(1):245-253. PubMed ID: 30375124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau.
    Liu B; Wang Y; Zhu H; Liang E; Camarero JJ
    Int J Biometeorol; 2016 Oct; 60(10):1577-1587. PubMed ID: 26939794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate-Driven Synchronized Growth of Alpine Trees in the Southeast Tibetan Plateau.
    Zhou F; Fang K; Zhang F; Dong Z; Chen D
    PLoS One; 2016; 11(6):e0156126. PubMed ID: 27257971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Past the climate optimum: Recruitment is declining at the world's highest juniper shrublines on the Tibetan Plateau.
    Lu X; Liang E; Wang Y; Babst F; Leavitt SW; Julio Camarero J
    Ecology; 2019 Feb; 100(2):e02557. PubMed ID: 30411785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau.
    Shen M; Piao S; Chen X; An S; Fu YH; Wang S; Cong N; Janssens IA
    Glob Chang Biol; 2016 Sep; 22(9):3057-66. PubMed ID: 27103613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Daytime warming triggers tree growth decline in the Northern Hemisphere.
    Tao W; Mao K; He J; Smith NG; Qiao Y; Guo J; Yang H; Wang W; Liu J; Chen L
    Glob Chang Biol; 2022 Aug; 28(16):4832-4844. PubMed ID: 35561010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High forest stand density exacerbates growth decline of conifers driven by warming but not broad-leaved trees in temperate mixed forest in northeast Asia.
    Cao J; Liu H; Zhao B; Li Z; Liang B; Shi L; Wu L; Cressey EL; Quine TA
    Sci Total Environ; 2021 Nov; 795():148875. PubMed ID: 34247087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Run to the hills: Forest growth responsiveness to drought increased at higher elevation during the late 20th century.
    Pompa-García M; González-Cásares M; Gazol A; Camarero JJ
    Sci Total Environ; 2021 Jun; 772():145286. PubMed ID: 33578149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: a useful climatic proxy.
    Liang E; Lu X; Ren P; Li X; Zhu L; Eckstein D
    Ann Bot; 2012 Mar; 109(4):721-8. PubMed ID: 22210848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disparate effects of global-change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites.
    Camarero JJ; Gazol A; Galván JD; Sangüesa-Barreda G; Gutiérrez E
    Glob Chang Biol; 2015 Feb; 21(2):738-49. PubMed ID: 25362899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Responses of radial growth of
    Xu HN; Wang JL; Peng XM; Ren ZJ
    Ying Yong Sheng Tai Xue Bao; 2022 Aug; 33(8):2097-2104. PubMed ID: 36043815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests.
    Tei S; Sugimoto A
    Glob Chang Biol; 2018 Sep; 24(9):4225-4237. PubMed ID: 29569800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent asymmetric warming trends of daytime versus nighttime and their linkages with vegetation greenness in temperate China.
    Du Z; Zhao J; Liu X; Wu Z; Zhang H
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35717-35727. PubMed ID: 31701415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling the response of vegetation dynamics to asymmetric warming over the Qinghai-Tibet plateau from 2001 to 2020.
    Xu B; Li J; Pei X; Yang H
    J Environ Manage; 2023 Dec; 347():119131. PubMed ID: 37783082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imprints of climate stress on tree growth (the past as harbinger of the future): ecological stress memory in Tibetan Plateau juniper forests.
    Julio Camarero J
    Proc Biol Sci; 2023 Feb; 290(1992):20222241. PubMed ID: 36722084
    [No Abstract]   [Full Text] [Related]  

  • 18. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Last-century forest productivity in a managed dry-edge Scots pine population: the two sides of climate warming.
    Marqués L; Madrigal-González J; Zavala MA; Camarero JJ; Hartig F
    Ecol Appl; 2018 Jan; 28(1):95-105. PubMed ID: 28944610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altitudinal disparity in growth of Dahurian larch (Larix gmelinii Rupr.) in response to recent climate change in northeast China.
    Bai X; Zhang X; Li J; Duan X; Jin Y; Chen Z
    Sci Total Environ; 2019 Jun; 670():466-477. PubMed ID: 30904658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.