These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33849076)

  • 1. Characteristic chemical probing patterns of loop motifs improve prediction accuracy of RNA secondary structures.
    Cao J; Xue Y
    Nucleic Acids Res; 2021 May; 49(8):4294-4307. PubMed ID: 33849076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing RNA structures in vitro and in vivo with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq).
    Watters KE; Yu AM; Strobel EJ; Settle AH; Lucks JB
    Methods; 2016 Jul; 103():34-48. PubMed ID: 27064082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring RNA structural codes with SHAPE chemistry.
    Weeks KM; Mauger DM
    Acc Chem Res; 2011 Dec; 44(12):1280-91. PubMed ID: 21615079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.
    Hajdin CE; Bellaousov S; Huggins W; Leonard CW; Mathews DH; Weeks KM
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5498-503. PubMed ID: 23503844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing.
    Loughrey D; Watters KE; Settle AH; Lucks JB
    Nucleic Acids Res; 2014 Dec; 42(21):e165. PubMed ID: 25303992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution.
    Wilkinson KA; Merino EJ; Weeks KM
    Nat Protoc; 2006; 1(3):1610-6. PubMed ID: 17406453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rtools: a web server for various secondary structural analyses on single RNA sequences.
    Hamada M; Ono Y; Kiryu H; Sato K; Kato Y; Fukunaga T; Mori R; Asai K
    Nucleic Acids Res; 2016 Jul; 44(W1):W302-7. PubMed ID: 27131356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating chemical footprinting data into RNA secondary structure prediction.
    Zarringhalam K; Meyer MM; Dotu I; Chuang JH; Clote P
    PLoS One; 2012; 7(10):e45160. PubMed ID: 23091593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots.
    Ruan J; Stormo GD; Zhang W
    Bioinformatics; 2004 Jan; 20(1):58-66. PubMed ID: 14693809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Method to Predict RNA Secondary Structure Based on RNA Folding Simulation.
    Liu Y; Zhao Q; Zhang H; Xu R; Li Y; Wei L
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):990-995. PubMed ID: 26552091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping RNA Structure In Vitro with SHAPE Chemistry and Next-Generation Sequencing (SHAPE-Seq).
    Watters KE; Lucks JB
    Methods Mol Biol; 2016; 1490():135-62. PubMed ID: 27665597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the RNA backbone: structural analysis of riboswitches by in-line probing and selective 2'-hydroxyl acylation and primer extension.
    Wakeman CA; Winkler WC
    Methods Mol Biol; 2009; 540():173-91. PubMed ID: 19381560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic and Chemical Probing Information as Soft Constraints in RNA Secondary Structure Prediction.
    von Löhneysen S; Spicher T; Varenyk Y; Yao HT; Lorenz R; Hofacker I; Stadler PF
    J Comput Biol; 2024 Jun; 31(6):549-563. PubMed ID: 38935442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [An iterative method for prediction of RNA secondary structures including pseudoknots based on minimum of free energy and covariance].
    Wang ZX; Luo ZG; Guan NY; Yan FM; Jin X; Zhang W
    Yi Chuan; 2007 Jul; 29(7):889-97. PubMed ID: 17646157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of consensus RNA secondary structures including pseudoknots.
    Witwer C; Hofacker IL; Stadler PF
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(2):66-77. PubMed ID: 17048382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlating SHAPE signatures with three-dimensional RNA structures.
    Bindewald E; Wendeler M; Legiewicz M; Bona MK; Wang Y; Pritt MJ; Le Grice SF; Shapiro BA
    RNA; 2011 Sep; 17(9):1688-96. PubMed ID: 21752927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rule-based approach for RNA pseudoknot prediction.
    Fu XZ; Wang H; Harrison RW; Harrison WL
    Int J Data Min Bioinform; 2008; 2(1):78-93. PubMed ID: 18399329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iFoldRNA v2: folding RNA with constraints.
    Krokhotin A; Houlihan K; Dokholyan NV
    Bioinformatics; 2015 Sep; 31(17):2891-3. PubMed ID: 25910700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction.
    Washietl S; Hofacker IL; Stadler PF; Kellis M
    Nucleic Acids Res; 2012 May; 40(10):4261-72. PubMed ID: 22287623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data.
    Poulsen LD; Kielpinski LJ; Salama SR; Krogh A; Vinther J
    RNA; 2015 May; 21(5):1042-52. PubMed ID: 25805860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.