These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 33849076)

  • 21. A two-dimensional replica-exchange molecular dynamics method for simulating RNA folding using sparse experimental restraints.
    Ebrahimi P; Kaur S; Baronti L; Petzold K; Chen AA
    Methods; 2019 Jun; 162-163():96-107. PubMed ID: 31059830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction.
    Boniecki MJ; Lach G; Dawson WK; Tomala K; Lukasz P; Soltysinski T; Rother KM; Bujnicki JM
    Nucleic Acids Res; 2016 Apr; 44(7):e63. PubMed ID: 26687716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction.
    Janssen S; Schudoma C; Steger G; Giegerich R
    BMC Bioinformatics; 2011 Nov; 12():429. PubMed ID: 22051375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A "naked" rod-like conformation similar but not identical to that observed in vitro.
    López-Carrasco A; Flores R
    RNA Biol; 2017 Aug; 14(8):1046-1054. PubMed ID: 27574720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FlexStem: improving predictions of RNA secondary structures with pseudoknots by reducing the search space.
    Chen X; He SM; Bu D; Zhang F; Wang Z; Chen R; Gao W
    Bioinformatics; 2008 Sep; 24(18):1994-2001. PubMed ID: 18586700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy-based RNA consensus secondary structure prediction in multiple sequence alignments.
    Washietl S; Bernhart SH; Kellis M
    Methods Mol Biol; 2014; 1097():125-41. PubMed ID: 24639158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Limits in accuracy and a strategy of RNA structure prediction using experimental information.
    Wang J; Williams B; Chirasani VR; Krokhotin A; Das R; Dokholyan NV
    Nucleic Acids Res; 2019 Jun; 47(11):5563-5572. PubMed ID: 31106330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust prediction of consensus secondary structures using averaged base pairing probability matrices.
    Kiryu H; Kin T; Asai K
    Bioinformatics; 2007 Feb; 23(4):434-41. PubMed ID: 17182698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DAFS: simultaneous aligning and folding of RNA sequences via dual decomposition.
    Sato K; Kato Y; Akutsu T; Asai K; Sakakibara Y
    Bioinformatics; 2012 Dec; 28(24):3218-24. PubMed ID: 23060618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting RNA secondary structures from sequence and probing data.
    Lorenz R; Wolfinger MT; Tanzer A; Hofacker IL
    Methods; 2016 Jul; 103():86-98. PubMed ID: 27064083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Swellix: a computational tool to explore RNA conformational space.
    Sloat N; Liu JW; Schroeder SJ
    BMC Bioinformatics; 2017 Nov; 18(1):504. PubMed ID: 29157200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporating phylogenetic-based covarying mutations into RNAalifold for RNA consensus structure prediction.
    Ge P; Zhang S
    BMC Bioinformatics; 2013 Apr; 14():142. PubMed ID: 23621982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating the quality of SHAPE data simulated by k-mers for RNA structure prediction.
    Montaseri S; Zare-Mirakabad F; Ganjtabesh M
    J Bioinform Comput Biol; 2017 Dec; 15(6):1750023. PubMed ID: 29113564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iFoldRNA: three-dimensional RNA structure prediction and folding.
    Sharma S; Ding F; Dokholyan NV
    Bioinformatics; 2008 Sep; 24(17):1951-2. PubMed ID: 18579566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interplay between molecular flexibility and RNA chemical probing reactivities analyzed at the nucleotide level via an extensive molecular dynamics study.
    Frezza E; Courban A; Allouche D; Sargueil B; Pasquali S
    Methods; 2019 Jun; 162-163():108-127. PubMed ID: 31145972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA secondary structure prediction using deep learning with thermodynamic integration.
    Sato K; Akiyama M; Sakakibara Y
    Nat Commun; 2021 Feb; 12(1):941. PubMed ID: 33574226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Base-pair ambiguity and the kinetics of RNA folding.
    Zhou G; Loper J; Geman S
    BMC Bioinformatics; 2019 Dec; 20(1):666. PubMed ID: 31830902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Topological constraints of RNA pseudoknotted and loop-kissing motifs: applications to three-dimensional structure prediction.
    Xu X; Chen SJ
    Nucleic Acids Res; 2020 Jul; 48(12):6503-6512. PubMed ID: 32491164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():290-9. PubMed ID: 16448022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.