These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33849760)

  • 1. Voice Feature Selection to Improve Performance of Machine Learning Models for Voice Production Inversion.
    Zhang Z
    J Voice; 2023 Jul; 37(4):479-485. PubMed ID: 33849760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of vocal fold physiology from voice acoustics using machine learning.
    Zhang Z
    J Acoust Soc Am; 2020 Mar; 147(3):EL264. PubMed ID: 32237804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English.
    Monsen RB; Engebretson AM; Vemula NR
    J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model.
    Ibarra EJ; Parra JA; Alzamendi GA; Cortés JP; Espinoza VM; Mehta DD; Hillman RE; Zañartu M
    Front Physiol; 2021; 12():732244. PubMed ID: 34539451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of one-dimensional and three-dimensional glottal flow models in left-right asymmetric vocal fold conditions.
    Yoshinaga T; Zhang Z; Iida A
    J Acoust Soc Am; 2022 Nov; 152(5):2557. PubMed ID: 36456298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational study of the effects of vocal fold stiffness parameters on voice production.
    Wang X; Jiang W; Zheng X; Xue Q
    J Voice; 2021 Mar; 35(2):327.e1-327.e11. PubMed ID: 31628047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Deep Learning Approach for Quantifying Vocal Fold Dynamics During Connected Speech Using Laryngeal High-Speed Videoendoscopy.
    Yousef AM; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF; Naghibolhosseini M
    J Speech Lang Hear Res; 2022 Jun; 65(6):2098-2113. PubMed ID: 35605603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-induced oscillations of vocal-fold replicas with tuned extensibility and material properties.
    Luizard P; Bailly L; Yousefi-Mashouf H; Girault R; Orgéas L; Henrich Bernardoni N
    Sci Rep; 2023 Dec; 13(1):22658. PubMed ID: 38114547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Supraglottal Acoustics on Fluid-Structure Interaction During Human Voice Production.
    Bodaghi D; Jiang W; Xue Q; Zheng X
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33399816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and Classification of Voice Pathologies Using Glottal Signal Parameters.
    Forero M LA; Kohler M; Vellasco MM; Cataldo E
    J Voice; 2016 Sep; 30(5):549-56. PubMed ID: 26474715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the Paraglottic Space on Voice Production in an MRI-Based Vocal Fold Model.
    Wu L; Zhang Z
    J Voice; 2023 Jul; 37(4):633.e15-633.e23. PubMed ID: 33752927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vocal instabilities in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2018 Sep; 144(3):1216. PubMed ID: 30424612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of vocal fold vertical stiffness variation on voice production.
    Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2016 Oct; 140(4):2856. PubMed ID: 27794296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating subglottal pressure and vocal fold adduction from the produced voice in a single-subject study (L).
    Zhang Z
    J Acoust Soc Am; 2022 Feb; 151(2):1337. PubMed ID: 35232110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relating Cepstral Peak Prominence to Cyclical Parameters of Vocal Fold Vibration from High-Speed Videoendoscopy Using Machine Learning: A Pilot Study.
    Popolo PS; Johnson AM
    J Voice; 2021 Sep; 35(5):703-716. PubMed ID: 32173147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vocal fold vibration amplitude, open quotient, speed quotient and their variability along glottal length: kymographic data from normal subjects.
    Lohscheller J; Svec JG; Döllinger M
    Logoped Phoniatr Vocol; 2013 Dec; 38(4):182-92. PubMed ID: 23173880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.