These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33849975)

  • 1. Extreme C-to-A Hypermutation at a Site of Cytosine-N4 Methylation.
    Cherry JL
    mBio; 2021 Apr; 12(2):. PubMed ID: 33849975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylation-Induced Hypermutation in Natural Populations of Bacteria.
    Cherry JL
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30275280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the substrate specificity of DNA methyltransferases. adenine-N6 DNA methyltransferases also modify cytosine residues at position N4.
    Jeltsch A; Christ F; Fatemi M; Roth M
    J Biol Chem; 1999 Jul; 274(28):19538-44. PubMed ID: 10391886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cytosine N4-methyltransferase M.PvuII also modifies adenine residues.
    Jeltsch A
    Biol Chem; 2001 Apr; 382(4):707-10. PubMed ID: 11405235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overproduction of DNA cytosine methyltransferases causes methylation and C --> T mutations at non-canonical sites.
    Bandaru B; Gopal J; Bhagwat AS
    J Biol Chem; 1996 Mar; 271(13):7851-9. PubMed ID: 8631830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putative DNA modification methylase DR_C0020 of Deinococcus radiodurans is an atypical SAM dependent C-5 cytosine DNA methylase.
    Patil NA; Basu B; Deobagkar DD; Apte SK; Deobagkar DN
    Biochim Biophys Acta Gen Subj; 2017 Mar; 1861(3):593-602. PubMed ID: 28038990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA methyltransferases: mechanistic models derived from kinetic analysis.
    Malygin EG; Hattman S
    Crit Rev Biochem Mol Biol; 2012; 47(2):97-193. PubMed ID: 22260147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional diversity among Type III restriction-modification systems that confer host DNA protection via methylation of the N4 atom of cytosine.
    Murray IA; Luyten YA; Fomenkov A; Dai N; Corrêa IR; Farmerie WG; Clark TA; Korlach J; Morgan RD; Roberts RJ
    PLoS One; 2021; 16(7):e0253267. PubMed ID: 34228724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide methylation patterns in Salmonella enterica Subsp. enterica Serovars.
    Pirone-Davies C; Hoffmann M; Roberts RJ; Muruvanda T; Timme RE; Strain E; Luo Y; Payne J; Luong K; Song Y; Tsai YC; Boitano M; Clark TA; Korlach J; Evans PS; Allard MW
    PLoS One; 2015; 10(4):e0123639. PubMed ID: 25860355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promiscuous methylation of non-canonical DNA sites by HaeIII methyltransferase.
    Cohen HM; Tawfik DS; Griffiths AD
    Nucleic Acids Res; 2002 Sep; 30(17):3880-5. PubMed ID: 12202773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of DNA methyltransferases.
    Cheng X
    Annu Rev Biophys Biomol Struct; 1995; 24():293-318. PubMed ID: 7663118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A GCDGC-specific DNA (cytosine-5) methyltransferase that methylates the GCWGC sequence on both strands and the GCSGC sequence on one strand.
    Furuta Y; Miura F; Ichise T; Nakayama SMM; Ikenaka Y; Zorigt T; Tsujinouchi M; Ishizuka M; Ito T; Higashi H
    PLoS One; 2022; 17(3):e0265225. PubMed ID: 35312710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytosine methylation is not the major factor inducing CpG dinucleotide deficiency in bacterial genomes.
    Wang Y; Rocha EP; Leung FC; Danchin A
    J Mol Evol; 2004 Jun; 58(6):692-700. PubMed ID: 15461426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of the restriction endonucleases HaeIII, BsrI, EaeI and CfrI to cytosine N4-methylation.
    Piekarowicz A; Radlińska M
    Acta Microbiol Pol; 1998; 47(4):405-7. PubMed ID: 10333562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [DNA methyltransferases for detection of the level of methylation of cytosine in the DNA CCWGG sequence].
    Shevchuk TV; Bur'ianov IaI
    Bioorg Khim; 1999 Aug; 25(8):630-3. PubMed ID: 10578468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of N6-methyladenine in GATC sequences of Selenomonas ruminantium.
    Pristas P; Molnarova V; Javorsky P
    J Basic Microbiol; 1998; 38(4):283-7. PubMed ID: 9791949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential de novo methylation of cytosine residues in non-CpG sequences by a domains rearranged DNA methyltransferase from tobacco plants.
    Wada Y; Ohya H; Yamaguchi Y; Koizumi N; Sano H
    J Biol Chem; 2003 Oct; 278(43):42386-93. PubMed ID: 12917429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base-flipping propensities of unmethylated, hemimethylated, and fully methylated CpG sites.
    Bianchi C; Zangi R
    J Phys Chem B; 2013 Feb; 117(8):2348-58. PubMed ID: 23363335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel subtype of type IIs restriction enzymes. BfiI endonuclease exhibits similarities to the EDTA-resistant nuclease Nuc of Salmonella typhimurium.
    Sapranauskas R; Sasnauskas G; Lagunavicius A; Vilkaitis G; Lubys A; Siksnys V
    J Biol Chem; 2000 Oct; 275(40):30878-85. PubMed ID: 10880511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic C5-cytosine methylation of DNA: mechanistic implications of new crystal structures for HhaL methyltransferase-DNA-AdoHcy complexes.
    O'Gara M; Klimasauskas S; Roberts RJ; Cheng X
    J Mol Biol; 1996 Sep; 261(5):634-45. PubMed ID: 8800212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.