These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33849975)

  • 21. Characterization of Cytosine Methylation and the DNA Methyltransferases of
    Wei H; Jiang S; Chen L; He C; Wu S; Peng H
    Int J Biol Sci; 2017; 13(4):458-470. PubMed ID: 28529454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analysis of BamHI DNA cytosine-N4 methyltransferase.
    Lindstrom WM; Malygin EG; Ovechkina LG; Zinoviev VV; Reich NO
    J Mol Biol; 2003 Jan; 325(4):711-20. PubMed ID: 12507474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel m4C modification in type I restriction-modification systems.
    Morgan RD; Luyten YA; Johnson SA; Clough EM; Clark TA; Roberts RJ
    Nucleic Acids Res; 2016 Nov; 44(19):9413-9425. PubMed ID: 27580720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure, function and mechanism of exocyclic DNA methyltransferases.
    Bheemanaik S; Reddy YV; Rao DN
    Biochem J; 2006 Oct; 399(2):177-90. PubMed ID: 16987108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of restriction-modification enzymes Cfr13 I from Citrobacter freundii RFL13.
    Bitinaité JB; Klimasauskas SJ; Butkus VV; Janulaitis AA
    FEBS Lett; 1985 Mar; 182(2):509-13. PubMed ID: 2984047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N4-methylation of cytosine drastically favors the formation of (6-4) photoproducts in a TCG context.
    Douki T; Meador JA; Bérard I; Wack A
    Photochem Photobiol; 2015; 91(1):102-8. PubMed ID: 25319211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of AluI, Cfr6I and PvuII restriction-modification enzymes with substrates containing either N4-methylcytosine or 5-methylcytosine.
    Butkus V; Klimasauskas S; Petrauskiene L; Maneliene Z; Lebionka A; Janulaitis A
    Biochim Biophys Acta; 1987 Aug; 909(3):201-7. PubMed ID: 3040102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preferential carcinogen-DNA adduct formation at codons 12 and 14 in the human K-ras gene and their possible mechanisms.
    Hu W; Feng Z; Tang MS
    Biochemistry; 2003 Aug; 42(33):10012-23. PubMed ID: 12924950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Partially deficient methylation of cytosine in DNA at CCATGG sites stimulates genetic recombination of bacteriophage lambda.
    Korba BE; Hays JB
    Cell; 1982 Mar; 28(3):531-41. PubMed ID: 6280874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction and maintenance of nonsymmetrical DNA methylation in Neurospora.
    Selker EU; Freitag M; Kothe GO; Margolin BS; Rountree MR; Allis CD; Tamaru H
    Proc Natl Acad Sci U S A; 2002 Dec; 99 Suppl 4(Suppl 4):16485-90. PubMed ID: 12189210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of restriction-modification enzymes from M. varians RFL19 with a new type of specificity toward modification of substrate.
    Butkus V; Klimasauskas S; Kersulyte D; Vaitkevicius D; Lebionka A; Janulaitis A
    Nucleic Acids Res; 1985 Aug; 13(16):5727-46. PubMed ID: 2994011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytosine deaminations catalyzed by DNA cytosine methyltransferases are unlikely to be the major cause of mutational hot spots at sites of cytosine methylation in Escherichia coli.
    Wyszynski M; Gabbara S; Bhagwat AS
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1574-8. PubMed ID: 8108447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites.
    Hermann A; Goyal R; Jeltsch A
    J Biol Chem; 2004 Nov; 279(46):48350-9. PubMed ID: 15339928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic Insights into Cytosine-N3 Methylation by DNA Methyltransferase DNMT3A.
    Dukatz M; Requena CE; Emperle M; Hajkova P; Sarkies P; Jeltsch A
    J Mol Biol; 2019 Aug; 431(17):3139-3145. PubMed ID: 31229457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-C-G recognition sequences of DNA cytosine-5-methyltransferase from rat liver.
    Hubrich-Kühner K; Buhk HJ; Wagner H; Kröger H; Simon D
    Biochem Biophys Res Commun; 1989 May; 160(3):1175-82. PubMed ID: 2543390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of methylation specificity of DsaV methyltransferase by a simple biochemical method.
    Gopal J; Bhagwat AS
    Nucleic Acids Res; 1995 Jan; 23(1):29-35. PubMed ID: 7870587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment.
    Gong W; O'Gara M; Blumenthal RM; Cheng X
    Nucleic Acids Res; 1997 Jul; 25(14):2702-15. PubMed ID: 9207015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methylated cytosine at Dcm (CCATGG) sites in Escherichia coli: possible function and evolutionary implications.
    Gómez-Eichelmann MC; Ramírez-Santos J
    J Mol Evol; 1993 Jul; 37(1):11-24. PubMed ID: 8360914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recognition of native DNA methylation by the PvuII restriction endonuclease.
    Rice MR; Blumenthal RM
    Nucleic Acids Res; 2000 Aug; 28(16):3143-50. PubMed ID: 10931930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deoxyribonucleic acid adenine and cytosine methylation in Salmonella typhimurium and Salmonella typhi.
    Gómez-Eichelmann MC
    J Bacteriol; 1979 Nov; 140(2):574-9. PubMed ID: 387741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.