These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33850516)

  • 1. Trading water: virtual water flows through interstate cereal trade in India.
    Harris F; Dalin C; Cuevas S; Lakshmikantha NR; Adhya T; Joy EJM; Scheelbeek PFD; Kayatz B; Nicholas O; Shankar B; Dangour AD; Green R
    Environ Res Lett; 2020 Dec; 15(12):. PubMed ID: 33850516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "More crop per drop": Exploring India's cereal water use since 2005.
    Kayatz B; Harris F; Hillier J; Adhya T; Dalin C; Nayak D; Green RF; Smith P; Dangour AD
    Sci Total Environ; 2019 Jul; 673():207-217. PubMed ID: 30986680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual groundwater transfers from overexploited aquifers in the United States.
    Marston L; Konar M; Cai X; Troy TJ
    Proc Natl Acad Sci U S A; 2015 Jul; 112(28):8561-6. PubMed ID: 26124137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial analysis of energy use and GHG emissions from cereal production in India.
    Rao ND; Poblete-Cazenave M; Bhalerao R; Davis KF; Parkinson S
    Sci Total Environ; 2019 Mar; 654():841-849. PubMed ID: 30448673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does virtual water influence the water stress pattern in Africa? A research perspective from the perspectives of production and trade.
    Zhang L; Feng S; Zhang E; Zhang Z
    Sci Total Environ; 2024 Oct; 946():174244. PubMed ID: 38917900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).
    Zhuo L; Mekonnen MM; Hoekstra AY
    Water Res; 2016 May; 94():73-85. PubMed ID: 26938494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agriculture, bioenergy, and water implications of constrained cereal trade and climate change impacts.
    Zhang Y; Waldhoff S; Wise M; Edmonds J; Patel P
    PLoS One; 2023; 18(9):e0291577. PubMed ID: 37713389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data.
    Aleksandrowicz L; Green R; Joy EJM; Harris F; Hillier J; Vetter SH; Smith P; Kulkarni B; Dangour AD; Haines A
    Environ Int; 2019 May; 126():207-215. PubMed ID: 30802638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the sustainability of post-Green Revolution cereals in India.
    Davis KF; Chhatre A; Rao ND; Singh D; Ghosh-Jerath S; Mridul A; Poblete-Cazenave M; Pradhan N; DeFries R
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25034-25041. PubMed ID: 31754037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative cereals can improve water use and nutrient supply in India.
    Davis KF; Chiarelli DD; Rulli MC; Chhatre A; Richter B; Singh D; DeFries R
    Sci Adv; 2018 Jul; 4(7):eaao1108. PubMed ID: 29978036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Savings and Losses of Scarce Virtual Water in the International Trade of Wheat, Maize, and Rice.
    Wu H; Jin R; Liu A; Jiang S; Chai L
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual water transfers in Africa: Assessing topical condition of water scarcity, water savings, and policy implications.
    Hirwa H; Peng Y; Zhang Q; Qiao Y; Leng P; Tian C; Yang G; Muhirwa F; Diop S; Kayiranga A; Li F; Chen G
    Sci Total Environ; 2022 Aug; 835():155343. PubMed ID: 35489483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in Climate Vulnerability and Projected Water Stress of The Gambia's Food Supply Between 1988 and 2018: Trading With Trade-Offs.
    Hadida G; Ali Z; Kastner T; Carr TW; Prentice AM; Green R; Scheelbeek P
    Front Public Health; 2022; 10():786071. PubMed ID: 35747777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Groundwater depletion embedded in international food trade.
    Dalin C; Wada Y; Kastner T; Puma MJ
    Nature; 2017 Mar; 543(7647):700-704. PubMed ID: 28358074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.
    Ye Q; Li Y; Zhuo L; Zhang W; Xiong W; Wang C; Wang P
    Water Res; 2018 Feb; 129():264-276. PubMed ID: 29156391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of trade agreements in the global cereal market and implications for virtual water flows.
    Falsetti B; Ridolfi L; Laio F
    Sci Rep; 2022 Apr; 12(1):6790. PubMed ID: 35474092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic view on agricultural trade patterns and virtual water flows in Peru.
    Schwarz J; Mathijs E; Maertens M
    Sci Total Environ; 2019 Sep; 683():719-728. PubMed ID: 31150892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The water use of Indian diets and socio-demographic factors related to dietary blue water footprint.
    Harris F; Green RF; Joy EJ; Kayatz B; Haines A; Dangour AD
    Sci Total Environ; 2017 Jun; 587-588():128-136. PubMed ID: 28215793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the impact of food trade centric on land, water, and food security in South Korea.
    Odey G; Adelodun B; Lee S; Adeyemi KA; Choi KS
    J Environ Manage; 2023 Apr; 332():117319. PubMed ID: 36731406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual water flows in the international trade of agricultural products of China.
    Zhang Y; Zhang J; Tang G; Chen M; Wang L
    Sci Total Environ; 2016 Jul; 557-558():1-11. PubMed ID: 26994788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.