BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33850699)

  • 1. COVID-19 lockdown: Effects on selected volatile organic compound (VOC) emissions over the major Indian metro cities.
    Pakkattil A; Muhsin M; Varma MKR
    Urban Clim; 2021 May; 37():100838. PubMed ID: 33850699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Personal and ambient exposures to air toxics in Camden, New Jersey.
    Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J;
    Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ozone profile retrievals from TROPOMI: Implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China.
    Zhao F; Liu C; Cai Z; Liu X; Bak J; Kim J; Hu Q; Xia C; Zhang C; Sun Y; Wang W; Liu J
    Sci Total Environ; 2021 Apr; 764():142886. PubMed ID: 33757247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Space-Based Observations of Ozone Precursors within California Wildfire Plumes and the Impacts on Ozone-NO
    Jin X; Fiore AM; Cohen RC
    Environ Sci Technol; 2023 Oct; 57(39):14648-14660. PubMed ID: 37703172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decrease in ambient volatile organic compounds during the COVID-19 lockdown period in the Pearl River Delta region, south China.
    Pei C; Yang W; Zhang Y; Song W; Xiao S; Wang J; Zhang J; Zhang T; Chen D; Wang Y; Chen Y; Wang X
    Sci Total Environ; 2022 Jun; 823():153720. PubMed ID: 35149077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of COVID-19 Pandemic Lockdown in Ambient Concentrations of Aromatic Volatile Organic Compounds in a Metropolitan City of Western India.
    Sahu LK; Tripathi N; Gupta M; Singh V; Yadav R; Patel K
    J Geophys Res Atmos; 2022 Mar; 127(6):e2022JD036628. PubMed ID: 35602912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of volatile organic compound emissions from anthropogenic and biogenic sources based on satellite observation of formaldehyde and glyoxal.
    Chen Y; Liu C; Su W; Hu Q; Zhang C; Liu H; Yin H
    Sci Total Environ; 2023 Feb; 859(Pt 1):159997. PubMed ID: 36368395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased ozone pollution alongside reduced nitrogen dioxide concentrations during Vienna's first COVID-19 lockdown: Significance for air quality management.
    Brancher M
    Environ Pollut; 2021 Sep; 284():117153. PubMed ID: 33940341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial variability and application of ratios between BTEX in two Canadian cities.
    Miller L; Xu X; Wheeler A; Atari DO; Grgicak-Mannion A; Luginaah I
    ScientificWorldJournal; 2011; 11():2536-49. PubMed ID: 22235184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal distribution characteristics and potential sources of VOCs at an industrial harbor city in southern Taiwan: Three-year VOCs monitoring data analysis.
    Yuan CS; Cheng WH; Huang HY
    J Environ Manage; 2022 Feb; 303():114259. PubMed ID: 34894492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of volatile organic compounds over Indian subcontinent during winter: WRF-chem simulation versus observations.
    Chutia L; Ojha N; Girach IA; Sahu LK; Alvarado LMA; Burrows JP; Pathak B; Bhuyan PK
    Environ Pollut; 2019 Sep; 252(Pt A):256-269. PubMed ID: 31153030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India.
    Hoque RR; Khillare PS; Agarwal T; Shridhar V; Balachandran S
    Sci Total Environ; 2008 Mar; 392(1):30-40. PubMed ID: 18067950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling pathways of elevated ozone induced by the 2020 lockdown in Europe by an observationally constrained regional model using TROPOMI.
    Souri AH; Chance K; Bak J; Nowlan CR; Abad GG; Jung Y; Wong DC; Mao J; Liu X
    Atmos Chem Phys; 2021 Dec; 21():1-19. PubMed ID: 34987561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote sensing study of ozone, NO
    Rawat P; Naja M
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):22515-22530. PubMed ID: 34792768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COVID-19 lockdown and its impact on tropospheric NO
    Biswal A; Singh T; Singh V; Ravindra K; Mor S
    Heliyon; 2020 Sep; 6(9):e04764. PubMed ID: 32864482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The concentration of BTEX in selected urban areas of Malaysia during the COVID-19 pandemic lockdown.
    Hawari NSSL; Latif MT; Hamid HHA; Leng TH; Othman M; Mohtar AAA; Azhari A; Dominick D
    Urban Clim; 2022 Sep; 45():101238. PubMed ID: 35855931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal variation of BTEX at road traffic intersection points in Delhi, India: source, ozone formation potential, and health risk assessment.
    Mehta D; Hazarika N; Srivastava A
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):11093-11104. PubMed ID: 31955332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ozone over Mexico City during the COVID-19 pandemic.
    Peralta O; Ortínez-Alvarez A; Torres-Jardón R; Suárez-Lastra M; Castro T; Ruíz-Suárez LG
    Sci Total Environ; 2021 Mar; 761():143183. PubMed ID: 33168247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong.
    Lee SC; Chiu MY; Ho KF; Zou SC; Wang X
    Chemosphere; 2002 Jul; 48(3):375-82. PubMed ID: 12146626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing source signatures in ambient BTEX concentrations.
    Zalel A; Yuval ; Broday DM
    Environ Pollut; 2008 Nov; 156(2):553-62. PubMed ID: 18289752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.