These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33850699)

  • 21. Observations of BTEX in the ambient air of Kuala Lumpur by passive sampling.
    Hamid HHA; Latif MT; Uning R; Nadzir MSM; Khan MF; Ta GC; Kannan N
    Environ Monit Assess; 2020 May; 192(6):342. PubMed ID: 32382809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Concentrations and ozone formation potentials of BTEX during 2008-2010 in urban Beijing, China].
    Cao HY; Pan YP; Wang H; Tan JH; Wang YS
    Huan Jing Ke Xue; 2013 Jun; 34(6):2065-70. PubMed ID: 23947015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristic changes of ozone and its precursors in London during COVID-19 lockdown and the ozone surge reason analysis.
    Zhang C; Stevenson D
    Atmos Environ (1994); 2022 Mar; 273():118980. PubMed ID: 35136378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis.
    Tsimpidi AP; Trail M; Hu Y; Nenes A; Russell AG
    J Air Waste Manag Assoc; 2012 Oct; 62(10):1150-65. PubMed ID: 23155861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Observations Confirm that Volatile Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities.
    Gkatzelis GI; Coggon MM; McDonald BC; Peischl J; Gilman JB; Aikin KC; Robinson MA; Canonaco F; Prevot ASH; Trainer M; Warneke C
    Environ Sci Technol; 2021 Apr; 55(8):4332-4343. PubMed ID: 33720711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First global observation of tropospheric formaldehyde from Chinese GaoFen-5 satellite: Locating source of volatile organic compounds.
    Su W; Liu C; Hu Q; Zhang C; Liu H; Xia C; Zhao F; Liu T; Lin J; Chen Y
    Environ Pollut; 2022 Mar; 297():118691. PubMed ID: 34921943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ambient volatile organic compounds in tropical environments: Potential sources, composition and impacts - A review.
    Mohd Hanif N; Limi Hawari NSS; Othman M; Abd Hamid HH; Ahamad F; Uning R; Ooi MCG; Wahab MIA; Sahani M; Latif MT
    Chemosphere; 2021 Dec; 285():131355. PubMed ID: 34710962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools.
    Raysoni AU; Stock TH; Sarnat JA; Chavez MC; Sarnat SE; Montoya T; Holguin F; Li WW
    Environ Pollut; 2017 Dec; 231(Pt 1):681-693. PubMed ID: 28850936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality.
    Gu S; Guenther A; Faiola C
    Environ Sci Technol; 2021 Sep; 55(18):12191-12201. PubMed ID: 34495669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A study of the trace gas columns of O3, NO2 and HCHO over Africa in September 1997.
    Meyer-Arnek J; Ladstätter-Weissenmayer A; Richter A; Wittrock F; Burrows JP
    Faraday Discuss; 2005; 130():387-405; discussion 491-517, 519-24. PubMed ID: 16161794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions.
    Sokhi RS; Singh V; Querol X; Finardi S; Targino AC; Andrade MF; Pavlovic R; Garland RM; Massagué J; Kong S; Baklanov A; Ren L; Tarasova O; Carmichael G; Peuch VH; Anand V; Arbilla G; Badali K; Beig G; Belalcazar LC; Bolignano A; Brimblecombe P; Camacho P; Casallas A; Charland JP; Choi J; Chourdakis E; Coll I; Collins M; Cyrys J; da Silva CM; Di Giosa AD; Di Leo A; Ferro C; Gavidia-Calderon M; Gayen A; Ginzburg A; Godefroy F; Gonzalez YA; Guevara-Luna M; Haque SM; Havenga H; Herod D; Hõrrak U; Hussein T; Ibarra S; Jaimes M; Kaasik M; Khaiwal R; Kim J; Kousa A; Kukkonen J; Kulmala M; Kuula J; La Violette N; Lanzani G; Liu X; MacDougall S; Manseau PM; Marchegiani G; McDonald B; Mishra SV; Molina LT; Mooibroek D; Mor S; Moussiopoulos N; Murena F; Niemi JV; Noe S; Nogueira T; Norman M; Pérez-Camaño JL; Petäjä T; Piketh S; Rathod A; Reid K; Retama A; Rivera O; Rojas NY; Rojas-Quincho JP; San José R; Sánchez O; Seguel RJ; Sillanpää S; Su Y; Tapper N; Terrazas A; Timonen H; Toscano D; Tsegas G; Velders GJM; Vlachokostas C; von Schneidemesser E; Vpm R; Yadav R; Zalakeviciute R; Zavala M
    Environ Int; 2021 Dec; 157():106818. PubMed ID: 34425482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial and temporal variations of volatile organic compounds using passive air samplers in the multi-industrial city of Ulsan, Korea.
    Kim SJ; Kwon HO; Lee MI; Seo Y; Choi SD
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5831-5841. PubMed ID: 30613884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global Significant Changes in Formaldehyde (HCHO) Columns Observed From Space at the Early Stage of the COVID-19 Pandemic.
    Sun W; Zhu L; De Smedt I; Bai B; Pu D; Chen Y; Shu L; Wang D; Fu TM; Wang X; Yang X
    Geophys Res Lett; 2021 Feb; 48(4):2e020GL091265. PubMed ID: 33785972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal and spatial distribution of BTEX pollutants in the atmosphere of metropolitan areas and neighbouring towns.
    Iovino P; Polverino R; Salvestrini S; Capasso S
    Environ Monit Assess; 2009 Mar; 150(1-4):437-44. PubMed ID: 18437518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of ozone sensitivity for NO
    Xue J; Zhao T; Luo Y; Miao C; Su P; Liu F; Zhang G; Qin S; Song Y; Bu N; Xing C
    Environ Int; 2022 Feb; 160():107048. PubMed ID: 34959197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Risk factors for increased BTEX exposure in four Australian cities.
    Hinwood AL; Rodriguez C; Runnion T; Farrar D; Murray F; Horton A; Glass D; Sheppeard V; Edwards JW; Denison L; Whitworth T; Eiser C; Bulsara M; Gillett RW; Powell J; Lawson S; Weeks I; Galbally I
    Chemosphere; 2007 Jan; 66(3):533-41. PubMed ID: 16837022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Importance of meteorology and chemistry in determining air pollutant levels during COVID-19 lockdown in Indian cities.
    Crilley LR; Iranpour YE; Young CJ
    Environ Sci Process Impacts; 2021 Nov; 23(11):1718-1728. PubMed ID: 34734948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study.
    Kheirbek I; Johnson S; Ross Z; Pezeshki G; Ito K; Eisl H; Matte T
    Environ Health; 2012 Jul; 11():51. PubMed ID: 22849853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal distribution, behaviour and reactivities of BTEX compounds in a suburban Atlantic area during a year.
    Pérez-Rial D; López-Mahía P; Muniategui-Lorenzo S; Prada-Rodríguez D
    J Environ Monit; 2009 Jun; 11(6):1216-25. PubMed ID: 19513453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unprecedented reduction in air pollution and corresponding short-term premature mortality associated with COVID-19 lockdown in Delhi, India.
    Maji KJ; Namdeo A; Bell M; Goodman P; Nagendra SMS; Barnes JH; De Vito L; Hayes E; Longhurst JW; Kumar R; Sharma N; Kuppili SK; Alshetty D
    J Air Waste Manag Assoc; 2021 Sep; 71(9):1085-1101. PubMed ID: 33764280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.