These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 33851057)
41. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. Gao H; Xiao F; Ching CB; Duan H ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683 [TBL] [Abstract][Full Text] [Related]
42. Substrate Engineered Interconnected Graphene Electrodes with Ultrahigh Energy and Power Densities for Energy Storage Applications. Chaichi A; Wang Y; Gartia MR ACS Appl Mater Interfaces; 2018 Jun; 10(25):21235-21245. PubMed ID: 29856205 [TBL] [Abstract][Full Text] [Related]
43. 3D CNTs/graphene network conductive substrate supported MOFs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor. Liu Y; Xin N; Yang Q; Shi W J Colloid Interface Sci; 2021 Feb; 583():288-298. PubMed ID: 33007585 [TBL] [Abstract][Full Text] [Related]
44. 3D Polyaniline Nanofibers Anchored on Carbon Paper for High-Performance and Light-Weight Supercapacitors. Rahman SU; Röse P; Surati M; Shah AUHA; Krewer U; Bilal S Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207726 [TBL] [Abstract][Full Text] [Related]
45. Hydrogen storage: the remaining scientific and technological challenges. Felderhoff M; Weidenthaler C; von Helmolt R; Eberle U Phys Chem Chem Phys; 2007 Jun; 9(21):2643-53. PubMed ID: 17627309 [TBL] [Abstract][Full Text] [Related]
46. Flexible and Self-Healing Aqueous Supercapacitors for Low Temperature Applications: Polyampholyte Gel Electrolytes with Biochar Electrodes. Li X; Liu L; Wang X; Ok YS; Elliott JAW; Chang SX; Chung HJ Sci Rep; 2017 May; 7(1):1685. PubMed ID: 28490815 [TBL] [Abstract][Full Text] [Related]
47. Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. Zhang L; Cai P; Wei Z; Liu T; Yu J; Al-Ghamdi AA; Wageh S J Colloid Interface Sci; 2021 Apr; 588():637-645. PubMed ID: 33267956 [TBL] [Abstract][Full Text] [Related]
48. Beyond Activated Carbon: Graphite-Cathode-Derived Li-Ion Pseudocapacitors with High Energy and High Power Densities. Wang G; Oswald S; Löffler M; Müllen K; Feng X Adv Mater; 2019 Apr; 31(14):e1807712. PubMed ID: 30767311 [TBL] [Abstract][Full Text] [Related]
49. A small portable proton exchange membrane fuel cell and hydrogen generator for medical applications. Adlhart OJ; Rohonyi P; Modroukas D; Driller J ASAIO J; 1997; 43(3):214-9. PubMed ID: 9152494 [TBL] [Abstract][Full Text] [Related]
50. High-performance hybrid carbon nanotube fibers for wearable energy storage. Lu Z; Chao Y; Ge Y; Foroughi J; Zhao Y; Wang C; Long H; Wallace GG Nanoscale; 2017 Apr; 9(16):5063-5071. PubMed ID: 28265639 [TBL] [Abstract][Full Text] [Related]
51. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Zhang Y; Zhao Y; Cheng X; Weng W; Ren J; Fang X; Jiang Y; Chen P; Zhang Z; Wang Y; Peng H Angew Chem Int Ed Engl; 2015 Sep; 54(38):11177-82. PubMed ID: 26352028 [TBL] [Abstract][Full Text] [Related]
52. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. Lim E; Kim H; Jo C; Chun J; Ku K; Kim S; Lee HI; Nam IS; Yoon S; Kang K; Lee J ACS Nano; 2014 Sep; 8(9):8968-78. PubMed ID: 25137384 [TBL] [Abstract][Full Text] [Related]
53. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Blanc F; Leskes M; Grey CP Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242 [TBL] [Abstract][Full Text] [Related]
55. High-performance nanostructured supercapacitors on a sponge. Chen W; Rakhi RB; Hu L; Xie X; Cui Y; Alshareef HN Nano Lett; 2011 Dec; 11(12):5165-72. PubMed ID: 21923166 [TBL] [Abstract][Full Text] [Related]
56. NiCo Metal-Organic Framework and Porous Carbon Interlayer-Based Supercapacitors Integrated with a Solar Cell for a Stand-Alone Power Supply System. Ojha M; Wu B; Deepa M ACS Appl Mater Interfaces; 2020 Sep; 12(38):42749-42762. PubMed ID: 32840351 [TBL] [Abstract][Full Text] [Related]
57. High Volumetric Energy Density Hybrid Supercapacitors Based on Reduced Graphene Oxide Scrolls. Rani JR; Thangavel R; Oh SI; Woo JM; Chandra Das N; Kim SY; Lee YS; Jang JH ACS Appl Mater Interfaces; 2017 Jul; 9(27):22398-22407. PubMed ID: 28613816 [TBL] [Abstract][Full Text] [Related]
58. Superbending (0-180°) and High-Voltage Operating Metal-Oxide-Based Flexible Supercapacitor. Kumar L; Boruah PK; Das MR; Deka S ACS Appl Mater Interfaces; 2019 Oct; 11(41):37665-37674. PubMed ID: 31549801 [TBL] [Abstract][Full Text] [Related]
59. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Owusu KA; Qu L; Li J; Wang Z; Zhao K; Yang C; Hercule KM; Lin C; Shi C; Wei Q; Zhou L; Mai L Nat Commun; 2017 Mar; 8():14264. PubMed ID: 28262797 [TBL] [Abstract][Full Text] [Related]
60. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Kang YJ; Chung H; Han CH; Kim W Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]