These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 33851057)
61. Redox-Driven Route for Widening Voltage Window in Asymmetric Supercapacitor. Sahoo R; Pham DT; Lee TH; Luu THT; Seok J; Lee YH ACS Nano; 2018 Aug; 12(8):8494-8505. PubMed ID: 30044606 [TBL] [Abstract][Full Text] [Related]
62. Electrochemical Performance of PbO2 and PbO2-CNT Composite Electrodes for Energy Storage Devices. Soumya MS; Binitha G; Praveen P; Subramanian KR; Lee YS; Nair VS; Sivakumar N J Nanosci Nanotechnol; 2015 Jan; 15(1):703-8. PubMed ID: 26328430 [TBL] [Abstract][Full Text] [Related]
63. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors. Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984 [TBL] [Abstract][Full Text] [Related]
64. Anchoring nitrogen-doped carbon quantum dots on nickel carbonate hydroxide nanosheets for hybrid supercapacitor applications. Ji Z; Ma D; Dai W; Liu K; Shen X; Zhu G; Nie Y; Pasang D; Yuan A J Colloid Interface Sci; 2021 May; 590():614-621. PubMed ID: 33588355 [TBL] [Abstract][Full Text] [Related]
65. Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Gao S; Sun Y; Lei F; Liang L; Liu J; Bi W; Pan B; Xie Y Angew Chem Int Ed Engl; 2014 Nov; 53(47):12789-93. PubMed ID: 25244183 [TBL] [Abstract][Full Text] [Related]
66. Hedgehog-inspired nanostructures for hydrogel-based all-solid-state hybrid supercapacitors with excellent flexibility and electrochemical performance. Sun P; He W; Yang H; Cao R; Yin J; Wang C; Xu X Nanoscale; 2018 Oct; 10(40):19004-19013. PubMed ID: 30198035 [TBL] [Abstract][Full Text] [Related]
67. Efficient Design for a High-Energy and High-Power Capability Hybrid Electric Power Device with Enhanced Electrochemical Interfaces. Sun R; Xia Z; Qi F; Jing F; Deng R; Wang S; Sun G ACS Appl Mater Interfaces; 2019 Jun; 11(22):19943-19949. PubMed ID: 31074955 [TBL] [Abstract][Full Text] [Related]
68. MoS Qin Q; Chen L; Wei T; Liu X Small; 2019 Jul; 15(29):e1803639. PubMed ID: 30565838 [TBL] [Abstract][Full Text] [Related]
69. Carbons and electrolytes for advanced supercapacitors. Béguin F; Presser V; Balducci A; Frackowiak E Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347 [TBL] [Abstract][Full Text] [Related]
70. Polypyrrole-MnO₂-Coated Textile-Based Flexible-Stretchable Supercapacitor with High Electrochemical and Mechanical Reliability. Yun TG; Hwang Bi; Kim D; Hyun S; Han SM ACS Appl Mater Interfaces; 2015 May; 7(17):9228-34. PubMed ID: 25856260 [TBL] [Abstract][Full Text] [Related]
71. Construction of CoO/Co-Cu-S Hierarchical Tubular Heterostructures for Hybrid Supercapacitors. Lu W; Shen J; Zhang P; Zhong Y; Hu Y; Lou XWD Angew Chem Int Ed Engl; 2019 Oct; 58(43):15441-15447. PubMed ID: 31380596 [TBL] [Abstract][Full Text] [Related]
73. High Capacity and Energy Density of Zn-Ni-Co-P Nanowire Arrays as an Advanced Electrode for Aqueous Asymmetric Supercapacitor. Lei X; Ge S; Tan Y; Wang Z; Li J; Li X; Hu G; Zhu X; Huang M; Zhu Y; Xiang B ACS Appl Mater Interfaces; 2020 Feb; 12(8):9158-9168. PubMed ID: 32003555 [TBL] [Abstract][Full Text] [Related]
74. Facile synthesis of strontium ferrite nanorods/graphene composites as advanced electrode materials for supercapacitors. Fu M; Zhang Z; Zhu Z; Zhuang Q; Chen W; Yu H; Liu Q J Colloid Interface Sci; 2021 Apr; 588():795-803. PubMed ID: 33308852 [TBL] [Abstract][Full Text] [Related]
75. Synthesis of Hierarchically Porous Sandwich-Like Carbon Materials for High-Performance Supercapacitors. Li Y; Chen C; Gao T; Zhang D; Huang X; Pan Y; Ye K; Cheng K; Cao D; Wang G Chemistry; 2016 Nov; 22(47):16863-16871. PubMed ID: 27734529 [TBL] [Abstract][Full Text] [Related]
76. Bottom-up Approach for Designing Cobalt Tungstate Nanospheres through Sulfur Amendment for High-Performance Hybrid Supercapacitors. Patil SJ; Chodankar NR; Huh YS; Han YK; Lee DW ChemSusChem; 2021 Mar; 14(6):1602-1611. PubMed ID: 33533140 [TBL] [Abstract][Full Text] [Related]
77. Towards High-Performance Zinc-Based Hybrid Supercapacitors via Macropores-Based Charge Storage in Organic Electrolytes. Qiu X; Wang N; Wang Z; Wang F; Wang Y Angew Chem Int Ed Engl; 2021 Apr; 60(17):9610-9617. PubMed ID: 33599370 [TBL] [Abstract][Full Text] [Related]
78. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors. Javed MS; Dai S; Wang M; Xi Y; Lang Q; Guo D; Hu C Nanoscale; 2015 Aug; 7(32):13610-8. PubMed ID: 26206591 [TBL] [Abstract][Full Text] [Related]
79. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors. Wang W; Guo S; Bozhilov KN; Yan D; Ozkan M; Ozkan CS Small; 2013 Nov; 9(21):3714-21. PubMed ID: 23650047 [TBL] [Abstract][Full Text] [Related]
80. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density. Hao P; Zhao Z; Li L; Tuan CC; Li H; Sang Y; Jiang H; Wong CP; Liu H Nanoscale; 2015 Sep; 7(34):14401-12. PubMed ID: 26248645 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]