These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33851136)

  • 41. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest.
    Johansen K; Morton MJL; Malbeteau Y; Aragon B; Al-Mashharawi S; Ziliani MG; Angel Y; Fiene G; Negrão S; Mousa MAA; Tester MA; McCabe MF
    Front Artif Intell; 2020; 3():28. PubMed ID: 33733147
    [TBL] [Abstract][Full Text] [Related]  

  • 42. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.
    Ludovisi R; Tauro F; Salvati R; Khoury S; Mugnozza Scarascia G; Harfouche A
    Front Plant Sci; 2017; 8():1681. PubMed ID: 29021803
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Machine Learning Approaches for Rice Seedling Growth Stages Detection.
    Tan S; Liu J; Lu H; Lan M; Yu J; Liao G; Wang Y; Li Z; Qi L; Ma X
    Front Plant Sci; 2022; 13():914771. PubMed ID: 35755682
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic UAV Phenotyping for Rice Disease Resistance Analysis Based on Multisource Data.
    Bai X; Fang H; He Y; Zhang J; Tao M; Wu Q; Yang G; Wei Y; Tang Y; Tang L; Lou B; Deng S; Yang Y; Feng X
    Plant Phenomics; 2023; 5():0019. PubMed ID: 37040287
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Estimation of soybean yield parameters under lodging conditions using RGB information from unmanned aerial vehicles.
    Bai D; Li D; Zhao C; Wang Z; Shao M; Guo B; Liu Y; Wang Q; Li J; Guo S; Wang R; Li YH; Qiu LJ; Jin X
    Front Plant Sci; 2022; 13():1012293. PubMed ID: 36589058
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aerial Imagery Analysis - Quantifying Appearance and Number of Sorghum Heads for Applications in Breeding and Agronomy.
    Guo W; Zheng B; Potgieter AB; Diot J; Watanabe K; Noshita K; Jordan DR; Wang X; Watson J; Ninomiya S; Chapman SC
    Front Plant Sci; 2018; 9():1544. PubMed ID: 30405675
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling.
    Watanabe K; Guo W; Arai K; Takanashi H; Kajiya-Kanegae H; Kobayashi M; Yano K; Tokunaga T; Fujiwara T; Tsutsumi N; Iwata H
    Front Plant Sci; 2017; 8():421. PubMed ID: 28400784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates.
    Madec S; Baret F; de Solan B; Thomas S; Dutartre D; Jezequel S; Hemmerlé M; Colombeau G; Comar A
    Front Plant Sci; 2017; 8():2002. PubMed ID: 29230229
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-Throughput Phenotyping of Canopy Cover and Senescence in Maize Field Trials Using Aerial Digital Canopy Imaging.
    Makanza R; Zaman-Allah M; Cairns JE; Magorokosho C; Tarekegne A; Olsen M; Prasanna BM
    Remote Sens (Basel); 2018 Feb; 10(2):330. PubMed ID: 33489316
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform.
    Hassan MA; Yang M; Rasheed A; Yang G; Reynolds M; Xia X; Xiao Y; He Z
    Plant Sci; 2019 May; 282():95-103. PubMed ID: 31003615
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Multi-Feature and Multi-Level Matching Algorithm Using Aerial Image and AIS for Vessel Identification.
    Xiu S; Wen Y; Yuan H; Xiao C; Zhan W; Zou X; Zhou C; Shah SC
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30884771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automatic freezing-tolerant rapeseed material recognition using UAV images and deep learning.
    Li L; Qiao J; Yao J; Li J; Li L
    Plant Methods; 2022 Jan; 18(1):5. PubMed ID: 35027060
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Towards the Automatic Detection of Pre-Existing Termite Mounds through UAS and Hyperspectral Imagery.
    Sandino J; Wooler A; Gonzalez F
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28946639
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prediction of heading date, culm length, and biomass from canopy-height-related parameters derived from time-series UAV observations of rice.
    Taniguchi S; Sakamoto T; Imase R; Nonoue Y; Tsunematsu H; Goto A; Matsushita K; Ohmori S; Maeda H; Takeuchi Y; Ishii T; Yonemaru JI; Ogawa D
    Front Plant Sci; 2022; 13():998803. PubMed ID: 36582650
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of Multi-Image Unmanned Aerial Vehicle Based High-Throughput Field Phenotyping of Canopy Temperature.
    Perich G; Hund A; Anderegg J; Roth L; Boer MP; Walter A; Liebisch F; Aasen H
    Front Plant Sci; 2020; 11():150. PubMed ID: 32158459
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of multifunctional unmanned aerial vehicles versus ground seeding and outplanting: What is more effective for improving the growth and quality of rice culture?
    Qi P; Wang Z; Wang C; Xu L; Jia X; Zhang Y; Wang S; Han L; Li T; Chen B; Li C; Mei C; Pan Y; Zhang W; Müller J; Liu Y; He X
    Front Plant Sci; 2022; 13():953753. PubMed ID: 35968127
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surveillance of panicle positions by unmanned aerial vehicle to reveal morphological features of rice.
    Ogawa D; Sakamoto T; Tsunematsu H; Yamamoto T; Kanno N; Nonoue Y; Yonemaru JI
    PLoS One; 2019; 14(10):e0224386. PubMed ID: 31671163
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ramie Yield Estimation Based on UAV RGB Images.
    Fu H; Wang C; Cui G; She W; Zhao L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477949
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of plant-level tomato biomass and yield using machine learning with unmanned aerial vehicle imagery.
    Tatsumi K; Igarashi N; Mengxue X
    Plant Methods; 2021 Jul; 17(1):77. PubMed ID: 34266447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.