These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 33851412)

  • 1. Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer.
    Lee SH; Song IH; Jang HJ
    Int J Cancer; 2021 Aug; 149(3):728-740. PubMed ID: 33851412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning captures selective features for discrimination of microsatellite instability from pathologic tissue slides of gastric cancer.
    Lee SH; Lee Y; Jang HJ
    Int J Cancer; 2023 Jan; 152(2):298-307. PubMed ID: 36054320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images.
    Lou J; Xu J; Zhang Y; Sun Y; Fang A; Liu J; Mur LAJ; Ji B
    Comput Methods Programs Biomed; 2022 Oct; 225():107095. PubMed ID: 36057226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study.
    Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J
    Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A next-generation sequencing-based strategy combining microsatellite instability and tumor mutation burden for comprehensive molecular diagnosis of advanced colorectal cancer.
    Xiao J; Li W; Huang Y; Huang M; Li S; Zhai X; Zhao J; Gao C; Xie W; Qin H; Cai S; Bai Y; Lan P; Zou Y
    BMC Cancer; 2021 Mar; 21(1):282. PubMed ID: 33726687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer.
    Cao R; Yang F; Ma SC; Liu L; Zhao Y; Li Y; Wu DH; Wang T; Lu WJ; Cai WJ; Zhu HB; Guo XJ; Lu YW; Kuang JJ; Huan WJ; Tang WM; Huang K; Huang J; Yao J; Dong ZY
    Theranostics; 2020; 10(24):11080-11091. PubMed ID: 33042271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study.
    Bilal M; Raza SEA; Azam A; Graham S; Ilyas M; Cree IA; Snead D; Minhas F; Rajpoot NM
    Lancet Digit Health; 2021 Dec; 3(12):e763-e772. PubMed ID: 34686474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning.
    Jang HJ; Lee A; Kang J; Song IH; Lee SH
    World J Gastroenterol; 2020 Oct; 26(40):6207-6223. PubMed ID: 33177794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach.
    Jang HJ; Lee A; Kang J; Song IH; Lee SH
    World J Gastroenterol; 2021 Nov; 27(44):7687-7704. PubMed ID: 34908807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. xDEEP-MSI: Explainable Bias-Rejecting Microsatellite Instability Deep Learning System in Colorectal Cancer.
    Bustos A; Payá A; Torrubia A; Jover R; Llor X; Bessa X; Castells A; Carracedo Á; Alenda C
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based methods for classification of microsatellite instability in endometrial cancer from HE-stained pathological images.
    Zhang Y; Chen S; Wang Y; Li J; Xu K; Chen J; Zhao J
    J Cancer Res Clin Oncol; 2023 Sep; 149(11):8877-8888. PubMed ID: 37150803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning can predict lymph node status directly from histology in colorectal cancer.
    Kiehl L; Kuntz S; Höhn J; Jutzi T; Krieghoff-Henning E; Kather JN; Holland-Letz T; Kopp-Schneider A; Chang-Claude J; Brobeil A; von Kalle C; Fröhling S; Alwers E; Brenner H; Hoffmeister M; Brinker TJ
    Eur J Cancer; 2021 Nov; 157():464-473. PubMed ID: 34649117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology.
    Schrammen PL; Ghaffari Laleh N; Echle A; Truhn D; Schulz V; Brinker TJ; Brenner H; Chang-Claude J; Alwers E; Brobeil A; Kloor M; Heij LR; Jäger D; Trautwein C; Grabsch HI; Quirke P; West NP; Hoffmeister M; Kather JN
    J Pathol; 2022 Jan; 256(1):50-60. PubMed ID: 34561876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning image analysis quantifies tumor heterogeneity and identifies microsatellite instability in colon cancer.
    Rubinstein JC; Foroughi Pour A; Zhou J; Sheridan TB; White BS; Chuang JH
    J Surg Oncol; 2023 Mar; 127(3):426-433. PubMed ID: 36251352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting microsatellite instability and key biomarkers in colorectal cancer from H&E-stained images: achieving state-of-the-art predictive performance with fewer data using Swin Transformer.
    Guo B; Li X; Yang M; Jonnagaddala J; Zhang H; Xu XS
    J Pathol Clin Res; 2023 May; 9(3):223-235. PubMed ID: 36723384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sporadic Early Onset Colorectal Cancer in Pakistan: a Case- Control Analysis of Microsatellite Instability.
    Siddique S; Tariq K; Rafiq S; Raheem A; Ahmed R; Shabbir-Moosajee M; Ghias K
    Asian Pac J Cancer Prev; 2016; 17(5):2587-92. PubMed ID: 27268635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study.
    Muti HS; Heij LR; Keller G; Kohlruss M; Langer R; Dislich B; Cheong JH; Kim YW; Kim H; Kook MC; Cunningham D; Allum WH; Langley RE; Nankivell MG; Quirke P; Hayden JD; West NP; Irvine AJ; Yoshikawa T; Oshima T; Huss R; Grosser B; Roviello F; d'Ignazio A; Quaas A; Alakus H; Tan X; Pearson AT; Luedde T; Ebert MP; Jäger D; Trautwein C; Gaisa NT; Grabsch HI; Kather JN
    Lancet Digit Health; 2021 Oct; 3(10):e654-e664. PubMed ID: 34417147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytolytic activity correlates with the mutational burden and deregulated expression of immune checkpoints in colorectal cancer.
    Zaravinos A; Roufas C; Nagara M; de Lucas Moreno B; Oblovatskaya M; Efstathiades C; Dimopoulos C; Ayiomamitis GD
    J Exp Clin Cancer Res; 2019 Aug; 38(1):364. PubMed ID: 31429779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosstalk Between the MSI Status and Tumor Microenvironment in Colorectal Cancer.
    Lin A; Zhang J; Luo P
    Front Immunol; 2020; 11():2039. PubMed ID: 32903444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression differences among different MSI statuses in colorectal cancer.
    Chen L; Pan X; Hu X; Zhang YH; Wang S; Huang T; Cai YD
    Int J Cancer; 2018 Oct; 143(7):1731-1740. PubMed ID: 29696646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.