These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33851438)

  • 1. Free energy change estimation: The Divide and Conquer MBAR method.
    Jia X; Ge H; Mei Y
    J Comput Chem; 2021 Jun; 42(17):1204-1211. PubMed ID: 33851438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPU-Accelerated Large-Scale Excited-State Simulation Based on Divide-and-Conquer Time-Dependent Density-Functional Tight-Binding.
    Yoshikawa T; Komoto N; Nishimura Y; Nakai H
    J Comput Chem; 2019 Dec; 40(31):2778-2786. PubMed ID: 31441083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regularized Localized Molecular Orbitals in a Divide-and-Conquer Approach for Linear Scaling Calculations.
    Peng L; Peng D; Gu FL; Yang W
    J Chem Theory Comput; 2022 May; 18(5):2975-2982. PubMed ID: 35416665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic hyperpolarizability calculations of large systems: the linear-scaling divide-and-conquer approach.
    Kobayashi M; Touma T; Nakai H
    J Chem Phys; 2012 Feb; 136(8):084108. PubMed ID: 22380033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated error control in divide-and-conquer self-consistent field calculations.
    Kobayashi M; Fujimori T; Taketsugu T
    J Comput Chem; 2018 Jun; 39(15):909-916. PubMed ID: 29399822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of binless multi-state free energy estimation with applications to protein-ligand binding.
    Tan Z; Gallicchio E; Lapelosa M; Levy RM
    J Chem Phys; 2012 Apr; 136(14):144102. PubMed ID: 22502496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-based automatic determination of buffer region in the divide-and-conquer second-order Møller-Plesset perturbation theory.
    Fujimori T; Kobayashi M; Taketsugu T
    J Comput Chem; 2021 Apr; 42(9):620-629. PubMed ID: 33534916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of multistate Bennett acceptance ratio method for free-energy calculations from enhanced sampling and free-energy perturbation.
    Matsunaga Y; Kamiya M; Oshima H; Jung J; Ito S; Sugita Y
    Biophys Rev; 2022 Dec; 14(6):1503-1512. PubMed ID: 36659993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computerized implementation of higher-order electron-correlation methods and their linear-scaling divide-and-conquer extensions.
    Nakano M; Yoshikawa T; Hirata S; Seino J; Nakai H
    J Comput Chem; 2017 Nov; 38(29):2520-2527. PubMed ID: 28795766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended Energy Divide-and-Conquer Method Based on Charge Conservation.
    Song GL; Li ZH; Fan KN
    J Chem Theory Comput; 2013 Apr; 9(4):1992-9. PubMed ID: 26583549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of divide-and-conquer method including Hartree-Fock exchange interaction.
    Akama T; Kobayashi M; Nakai H
    J Comput Chem; 2007 Sep; 28(12):2003-12. PubMed ID: 17455367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Computation of Thermodynamic Properties over Multidimensional Nonbonded Parameter Spaces Using Adaptive Multistate Reweighting.
    Naden LN; Shirts MR
    J Chem Theory Comput; 2016 Apr; 12(4):1806-23. PubMed ID: 26849009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the sources of error in MBAR through asymptotic analysis.
    Li XS; Van Koten B; Dinner AR; Thiede EH
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37259996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divide-and-conquer-based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations.
    Kobayashi M; Nakai H
    J Chem Phys; 2009 Sep; 131(11):114108. PubMed ID: 19778101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DCMB that combines divide-and-conquer and mixed-basis set methods for accurate geometry optimizations, total energies, and vibrational frequencies of large molecules.
    Wu A; Xu X
    J Comput Chem; 2012 Jun; 33(16):1421-32. PubMed ID: 22496038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Solver for Large Scale Multistate Bennett Acceptance Ratio Equations.
    Ding X; Vilseck JZ; Brooks CL
    J Chem Theory Comput; 2019 Feb; 15(2):799-802. PubMed ID: 30689377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Alternative to Conventional λ-Intermediate States in Alchemical Free Energy Calculations: λ-Enveloping Distribution Sampling.
    König G; Glaser N; Schroeder B; Kubincová A; Hünenberger PH; Riniker S
    J Chem Inf Model; 2020 Nov; 60(11):5407-5423. PubMed ID: 32794763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method.
    Kobayashi M; Imamura Y; Nakai H
    J Chem Phys; 2007 Aug; 127(7):074103. PubMed ID: 17718602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid-liquid coexistence.
    Correa GB; Zhang Y; Abreu CRA; Tavares FW; Maginn EJ
    J Chem Phys; 2023 Sep; 159(10):. PubMed ID: 37694744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension of linear-scaling divide-and-conquer-based correlation method to coupled cluster theory with singles and doubles excitations.
    Kobayashi M; Nakai H
    J Chem Phys; 2008 Jul; 129(4):044103. PubMed ID: 18681630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.