These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33851449)

  • 1. In Situ Preparation of Mechanically Enhanced Hydrogel via Dispersion Polymerization in Aqueous Solution.
    Chen H; Zhang X; Lin Z; Zhang R; Yu B; Li Y; Xu FJ
    Macromol Rapid Commun; 2021 Sep; 42(18):e2100028. PubMed ID: 33851449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A family of mechanically adaptive supramolecular graphene oxide/poly(ethylenimine) hydrogels from aqueous assembly.
    Wang C; Duan Y; Zacharia NS; Vogt BD
    Soft Matter; 2017 Feb; 13(6):1161-1170. PubMed ID: 28098316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mussel-inspired self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase and their applications in flexible sensors.
    Li S; Zhou H; Li Y; Jin X; Liu H; Lai J; Wu Y; Chen W; Ma A
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):431-439. PubMed ID: 34509117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust, tough and anti-fatigue cationic latex composite hydrogels based on dual physically cross-linked networks.
    Gu S; Duan L; Ren X; Gao GH
    J Colloid Interface Sci; 2017 Apr; 492():119-126. PubMed ID: 28081456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheology and morphology of pristine graphene/polyacrylamide gels.
    Das S; Irin F; Ma L; Bhattacharia SK; Hedden RC; Green MJ
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8633-40. PubMed ID: 23915342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties.
    Hao S; Shao C; Meng L; Cui C; Xu F; Yang J
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymerization-Induced Hierarchical Self-Assembly: From Monomer to Complex Colloidal Molecules and Beyond.
    Wan J; Fan B; Putera K; Kim J; Banaszak Holl MM; Thang SH
    ACS Nano; 2021 Aug; 15(8):13721-13731. PubMed ID: 34375086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis.
    Suriano R; Griffini G; Chiari M; Levi M; Turri S
    J Mech Behav Biomed Mater; 2014 Feb; 30():339-46. PubMed ID: 24368174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release.
    Ganguly S; Ray D; Das P; Maity PP; Mondal S; Aswal VK; Dhara S; Das NC
    Ultrason Sonochem; 2018 Apr; 42():212-227. PubMed ID: 29429663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of hydrogels via ultrasonic polymerization.
    Cass P; Knower W; Pereeia E; Holmes NP; Hughes T
    Ultrason Sonochem; 2010 Feb; 17(2):326-32. PubMed ID: 19762267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Formation of Covalent Second Network in a DNA Supramolecular Hydrogel and Its Application for 3D Cell Imaging.
    Cao T; Jia H; Dong Y; Gui S; Liu D
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4185-4192. PubMed ID: 31896250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Automated Synthesis of Quasi Triblock Copolymers for Self-Healing Physically Crosslinked Hydrogels.
    Voorhaar L; De Meyer B; Du Prez F; Hoogenboom R
    Macromol Rapid Commun; 2016 Oct; 37(20):1682-1688. PubMed ID: 27611732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reusable self-healing hydrogels realized via in situ polymerization.
    Vivek B; Prasad E
    J Phys Chem B; 2015 Apr; 119(14):4881-7. PubMed ID: 25774447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.
    Kufelt O; El-Tamer A; Sehring C; Meißner M; Schlie-Wolter S; Chichkov BN
    Acta Biomater; 2015 May; 18():186-95. PubMed ID: 25749294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong and Tough Nanostructured Hydrogels and Organogels Prepared by Polymerization-Induced Self-Assembly.
    Zeng Z; Li Z; Li Q; Song G; Huo M
    Small Methods; 2023 Jun; 7(6):e2201592. PubMed ID: 36965093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable, Self-Healing, and Multi-Responsive Hydrogels via Dynamic Covalent Bond Formation between Benzoxaborole and Hydroxyl Groups.
    Chen Y; Tan Z; Wang W; Peng YY; Narain R
    Biomacromolecules; 2019 Feb; 20(2):1028-1035. PubMed ID: 30596492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-Laden Bioactive Hydrogel for Biocatalytic Monitoring and Regulation.
    Wang X; Wang Q
    Acc Chem Res; 2021 Mar; 54(5):1274-1287. PubMed ID: 33570397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically robust and stretchable silk/hyaluronic acid hydrogels.
    Tavsanli B; Okay O
    Carbohydr Polym; 2019 Mar; 208():413-420. PubMed ID: 30658818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A protocol for rheological characterization of hydrogels for tissue engineering strategies.
    Zuidema JM; Rivet CJ; Gilbert RJ; Morrison FA
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1063-73. PubMed ID: 24357498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new strategy for the preparation of supramolecular neutral hydrogels.
    Percec V; Bera TK; Butera RJ
    Biomacromolecules; 2002; 3(2):272-9. PubMed ID: 11888311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.