BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33851500)

  • 1. Expanding the Substrate Scope of Nitrating Cytochrome P450 TxtE by Active Site Engineering of a Reductase Fusion.
    Saroay R; Roiban GD; Alkhalaf LM; Challis GL
    Chembiochem; 2021 Jul; 22(13):2262-2265. PubMed ID: 33851500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural, functional, and spectroscopic characterization of the substrate scope of the novel nitrating cytochrome P450 TxtE.
    Dodani SC; Cahn JK; Heinisch T; Brinkmann-Chen S; McIntosh JA; Arnold FH
    Chembiochem; 2014 Oct; 15(15):2259-67. PubMed ID: 25182183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An artificial self-sufficient cytochrome P450 directly nitrates fluorinated tryptophan analogs with a different regio-selectivity.
    Zuo R; Zhang Y; Huguet-Tapia JC; Mehta M; Dedic E; Bruner SD; Loria R; Ding Y
    Biotechnol J; 2016 May; 11(5):624-32. PubMed ID: 26743860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Ferric-Superoxo Intermediate of the TxtE Nitration Pathway Resists Reduction, Facilitating Its Reaction with Nitric Oxide.
    Martin CP; Chen M; Martinez MF; Ding Y; Caranto JD
    Biochemistry; 2021 Aug; 60(31):2436-2446. PubMed ID: 34319079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring reactions catalyzed by heme-dependent enzymes: spectroscopic characterization of the L-tryptophan-nitrating cytochrome P450 TxtE.
    Barry SM; Challis GL
    Methods Enzymol; 2012; 516():171-94. PubMed ID: 23034229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct aromatic nitration by bacterial P450 enzymes.
    Chen M; Petriti V; Mondal A; Jiang Y; Ding Y
    Methods Enzymol; 2023; 693():307-337. PubMed ID: 37977734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into Substrate Recognition by the Unusual Nitrating Enzyme RufO.
    Dratch BD; McWhorter KL; Blue TC; Jones SK; Horwitz SM; Davis KM
    ACS Chem Biol; 2023 Aug; 18(8):1713-1718. PubMed ID: 37555759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into the mechanism for recognizing substrate of the cytochrome P450 enzyme TxtE.
    Yu F; Li M; Xu C; Wang Z; Zhou H; Yang M; Chen Y; Tang L; He J
    PLoS One; 2013; 8(11):e81526. PubMed ID: 24282603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate.
    Louka S; Barry SM; Heyes DJ; Mubarak MQE; Ali HS; Alkhalaf LM; Munro AW; Scrutton NS; Challis GL; de Visser SP
    J Am Chem Soc; 2020 Sep; 142(37):15764-15779. PubMed ID: 32811149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome P450–catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis.
    Barry SM; Kers JA; Johnson EG; Song L; Aston PR; Patel B; Krasnoff SB; Crane BR; Gibson DM; Loria R; Challis GL
    Nat Chem Biol; 2012 Oct; 8(10):814-6. PubMed ID: 22941045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered P450 biocatalysts show improved activity and regio-promiscuity in aromatic nitration.
    Zuo R; Zhang Y; Jiang C; Hackett JC; Loria R; Bruner SD; Ding Y
    Sci Rep; 2017 Apr; 7(1):842. PubMed ID: 28405004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes.
    Appel D; Lutz-Wahl S; Fischer P; Schwaneberg U; Schmid RD
    J Biotechnol; 2001 Jun; 88(2):167-71. PubMed ID: 11403851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan-96 in cytochrome P450 BM3 plays a key role in enzyme survival.
    Ravanfar R; Sheng Y; Gray HB; Winkler JR
    FEBS Lett; 2023 Jan; 597(1):59-64. PubMed ID: 36250256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of a bacterial cytochrome P450 monooxygenase catalyzing the 3-nitration of tyrosine in rufomycin biosynthesis.
    Tomita H; Katsuyama Y; Minami H; Ohnishi Y
    J Biol Chem; 2017 Sep; 292(38):15859-15869. PubMed ID: 28774961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Enzymatic Route to α-Tocopherol Synthons: Aromatic Hydroxylation of Pseudocumene and Mesitylene with P450 BM3.
    Dennig A; Weingartner AM; Kardashliev T; Müller CA; Tassano E; Schürmann M; Ruff AJ; Schwaneberg U
    Chemistry; 2017 Dec; 23(71):17981-17991. PubMed ID: 28990705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Cytochrome P450BM3 Enzymes for Direct Nitration of Unsaturated Hydrocarbons.
    Wang X; Lin X; Jiang Y; Qin X; Ma N; Yao F; Dong S; Liu C; Feng Y; Jin L; Xian M; Cong Z
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202217678. PubMed ID: 36660956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxidase catalyzed nitration of tryptophan derivatives. Mechanism, products and comparison with chemical nitrating agents.
    Sala A; Nicolis S; Roncone R; Casella L; Monzani E
    Eur J Biochem; 2004 Jul; 271(13):2841-52. PubMed ID: 15206949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for Substrate-Regulated P450 Catalysis: From Substrate Engineering to Co-catalysis.
    Xu J; Wang C; Cong Z
    Chemistry; 2019 May; 25(28):6853-6863. PubMed ID: 30698852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulations of a Cytochrome P450 from
    Faponle AS; Roy A; Adelegan AA; Gauld JW
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34204747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitration and inactivation of cytochrome P450BM-3 by peroxynitrite. Stopped-flow measurements prove ferryl intermediates.
    Daiber A; Herold S; Schöneich C; Namgaladze D; Peterson JA; Ullrich V
    Eur J Biochem; 2000 Dec; 267(23):6729-39. PubMed ID: 11082183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.