These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33851828)

  • 1. Copper Nanocrystal Morphology Determines the Viability of Molecular Surface Functionalization in Tuning Electrocatalytic Behavior in CO
    Pankhurst JR; Iyengar P; Okatenko V; Buonsanti R
    Inorg Chem; 2021 May; 60(10):6939-6945. PubMed ID: 33851828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-ligand bond strength determines the fate of organic ligands on the catalyst surface during the electrochemical CO
    Pankhurst JR; Iyengar P; Loiudice A; Mensi M; Buonsanti R
    Chem Sci; 2020 Aug; 11(34):9296-9302. PubMed ID: 34094200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure- and Electrolyte-Sensitivity in CO
    Arán-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular tunability of surface-functionalized metal nanocrystals for selective electrochemical CO
    Pankhurst JR; Guntern YT; Mensi M; Buonsanti R
    Chem Sci; 2019 Nov; 10(44):10356-10365. PubMed ID: 32110324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular tuning of CO
    Li F; Thevenon A; Rosas-Hernández A; Wang Z; Li Y; Gabardo CM; Ozden A; Dinh CT; Li J; Wang Y; Edwards JP; Xu Y; McCallum C; Tao L; Liang ZQ; Luo M; Wang X; Li H; O'Brien CP; Tan CS; Nam DH; Quintero-Bermudez R; Zhuang TT; Li YC; Han Z; Britt RD; Sinton D; Agapie T; Peters JC; Sargent EH
    Nature; 2020 Jan; 577(7791):509-513. PubMed ID: 31747679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction.
    Loiudice A; Lobaccaro P; Kamali EA; Thao T; Huang BH; Ager JW; Buonsanti R
    Angew Chem Int Ed Engl; 2016 May; 55(19):5789-92. PubMed ID: 27059162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer-Covered Copper Catalysts Alter the Reaction Pathway of the Electrochemical CO
    Jun M; Kim D; Kim M; Kim M; Kwon T; Lee K
    ACS Omega; 2022 Nov; 7(47):42655-42663. PubMed ID: 36467922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unexpected high selectivity for acetate formation from CO
    Cai R; Sun M; Ren J; Ju M; Long X; Huang B; Yang S
    Chem Sci; 2021 Dec; 12(46):15382-15388. PubMed ID: 34976359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Activity/Selectivity and Phase Stability of Thermally Grown Copper Oxides during the Electrocatalytic Reduction of CO
    Velasco-Vélez JJ; Chuang CH; Gao D; Zhu Q; Ivanov D; Jeon HS; Arrigo R; Mom RV; Stotz E; Wu HL; Jones TE; Roldan Cuenya B; Knop-Gericke A; Schlögl R
    ACS Catal; 2020 Oct; 10(19):11510-11518. PubMed ID: 33042610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermediate Binding Control Using Metal-Organic Frameworks Enhances Electrochemical CO
    Nam DH; Shekhah O; Lee G; Mallick A; Jiang H; Li F; Chen B; Wicks J; Eddaoudi M; Sargent EH
    J Am Chem Soc; 2020 Dec; 142(51):21513-21521. PubMed ID: 33319985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergized Cu/Pb Core/Shell Electrocatalyst for High-Efficiency CO
    Wang P; Yang H; Xu Y; Huang X; Wang J; Zhong M; Cheng T; Shao Q
    ACS Nano; 2021 Jan; 15(1):1039-1047. PubMed ID: 33377388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Structural Sensitivity of CO
    Jeong S; Choi MH; Jagdale GS; Zhong Y; Siepser NP; Wang Y; Zhan X; Baker LA; Ye X
    J Am Chem Soc; 2022 Jul; 144(28):12673-12680. PubMed ID: 35793438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New aspects of C2 selectivity in electrochemical CO
    Shah AH; Wang Y; Hussain S; Akbar MB; Woldu AR; Zhang X; He T
    Phys Chem Chem Phys; 2020 Jan; 22(4):2046-2053. PubMed ID: 31904072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-Sensitive Electrocatalytic Reduction of CO
    Payra S; Shenoy S; Chakraborty C; Tarafder K; Roy S
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19402-19414. PubMed ID: 32270996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts.
    Roberts FS; Kuhl KP; Nilsson A
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5179-82. PubMed ID: 25728325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation State and Surface Reconstruction of Cu under CO
    Lee SH; Lin JC; Farmand M; Landers AT; Feaster JT; Avilés Acosta JE; Beeman JW; Ye Y; Yano J; Mehta A; Davis RC; Jaramillo TF; Hahn C; Drisdell WS
    J Am Chem Soc; 2021 Jan; 143(2):588-592. PubMed ID: 33382947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Cuprophilic Interactions in Crystalline Catalysts Facilitate the Highly Selective Electroreduction of CO
    Zhang L; Li XX; Lang ZL; Liu Y; Liu J; Yuan L; Lu WY; Xia YS; Dong LZ; Yuan DQ; Lan YQ
    J Am Chem Soc; 2021 Mar; 143(10):3808-3816. PubMed ID: 33651597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective CO
    Cheng B; Du J; Yuan H; Tao Y; Chen Y; Lei J; Han Z
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27823-27832. PubMed ID: 35675583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.