BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 3385224)

  • 1. Uncoupling of oxidative phosphorylation does not induce thermotolerance in cultured Chinese hamster cells.
    Rastogi D; Nagle WA; Henle KJ; Moss AJ; Rastogi SP
    Int J Hyperthermia; 1988; 4(3):333-44. PubMed ID: 3385224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of hyperthermia-induced cytotoxicity upon ATP deprivation.
    Laval F; Michel S
    Cancer Lett; 1982 Jan; 15(1):61-5. PubMed ID: 7059963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of energy in hyperthermia-induced mammalian cell inactivation: a study of the effects of glucose starvation and an uncoupler of oxidative phosphorylation.
    Haveman J; Hahn GM
    J Cell Physiol; 1981 May; 107(2):237-41. PubMed ID: 7195908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of oxidative stress induced by cysteamine upon the induction and development of thermotolerance in Chinese hamster ovary cells.
    Issels RD; Bourier S; Böning B; Li GC; Mak JJ; Wilmanns W
    Cancer Res; 1987 May; 47(9):2268-74. PubMed ID: 3567920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hyperthermia (45 degrees C) on calcium flux in Chinese hamster ovary HA-1 fibroblasts and its potential role in cytotoxicity and heat resistance.
    Stevenson MA; Calderwood SK; Hahn GM
    Cancer Res; 1987 Jul; 47(14):3712-7. PubMed ID: 3109731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemically induced resistance to heat treatment and stress protein synthesis in cultured mammalian cells.
    Haveman J; Li GC; Mak JY; Kipp JB
    Int J Radiat Biol Relat Stud Phys Chem Med; 1986 Jul; 50(1):51-64. PubMed ID: 3487525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mitochondria-targeted derivative of the classical uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone is an effective mitochondrial recoupler.
    Iaubasarova IR; Khailova LS; Firsov AM; Grivennikova VG; Kirsanov RS; Korshunova GA; Kotova EA; Antonenko YN
    PLoS One; 2020; 15(12):e0244499. PubMed ID: 33378414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protection against heat-induced cell killing by alanine.
    Henle KJ; Cunningham MA; Nagle WA; Moss AJ
    Int J Hyperthermia; 1988; 4(3):323-31. PubMed ID: 3290349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cycloheximide or puromycin on induction of thermotolerance by sodium arsenite in Chinese hamster ovary cells: involvement of heat shock proteins.
    Lee YJ; Dewey WC
    J Cell Physiol; 1987 Jul; 132(1):41-8. PubMed ID: 3597553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance.
    Holahan EV; Highfield DP; Holahan PK; Dewey WC
    Radiat Res; 1984 Jan; 97(1):108-31. PubMed ID: 6695037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent Roles of Escherichia Coli Encoded Lon Protease in Imparting Resistance to Uncouplers of Oxidative Phosphorylation: Roles of marA, rob, soxS and acrB.
    Verma T; Nandini SS; Singh V; Raghavan A; Annappa H; Bhaskarla C; Dubey AK; Nandi D
    Curr Microbiol; 2024 Feb; 81(4):98. PubMed ID: 38372817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of metabolic inhibitors on the degradation of tight junctions in HT29 cells.
    Keller G; Ben-Shaul Y; Bacher A
    Exp Cell Res; 1992 May; 200(1):16-25. PubMed ID: 1563485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat protection by glycerol in vitro.
    Henle KJ; Warters RL
    Cancer Res; 1982 Jun; 42(6):2171-6. PubMed ID: 7074597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermotolerance induced by 2,4-dinitrophenol.
    Boon-Niermeijer EK; Souren JE; Van Wijk R
    Int J Hyperthermia; 1987; 3(2):133-41. PubMed ID: 3598249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein dissociation from GRP78 and secretion are blocked by depletion of cellular ATP levels.
    Dorner AJ; Wasley LC; Kaufman RJ
    Proc Natl Acad Sci U S A; 1990 Oct; 87(19):7429-32. PubMed ID: 2120699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of carbonyl cyanide m-chlorophenylhydrazone on steroid transport in membrane vesicles of Pseudomonas testosteroni.
    Culos D; Watanabe M
    J Steroid Biochem; 1983 Aug; 19(2):1127-33. PubMed ID: 6310264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of intracellular pH as a possible mechanism for killing cells in acidic regions of solid tumors: effects of carbonylcyanide-3-chlorophenylhydrazone.
    Newell KJ; Tannock IF
    Cancer Res; 1989 Aug; 49(16):4477-82. PubMed ID: 2743336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of thermotolerance in CHO cells: modification by procaine.
    Rastogi D; Henle KJ; Nagle WA; Moss AJ; Neilan BA; Rastogi SP
    Int J Hyperthermia; 1987; 3(1):63-70. PubMed ID: 3559299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H+, K+, and Na+ transport across phospholipid vesicular membrane by the combined action of proton uncoupler 2,4-dinitrophenol and valinomycin.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1996 Jul; 1282(2):193-9. PubMed ID: 8703973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the uncoupler carbonyl cyanide m-chlorophenylhydrazone on K+ transport, ATP level and intracellular pH of Chlorella fusca.
    Tromballa HW
    Biochim Biophys Acta; 1981 Jun; 636(1):98-103. PubMed ID: 7284347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.