BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33852272)

  • 21. Distributed Electric Field Induces Orientations of Nanosheets to Prepare Hydrogels with Elaborate Ordered Structures and Programmed Deformations.
    Zhu QL; Dai CF; Wagner D; Daab M; Hong W; Breu J; Zheng Q; Wu ZL
    Adv Mater; 2020 Nov; 32(47):e2005567. PubMed ID: 33079426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinspired Anisotropic Chitosan Hybrid Hydrogel.
    Wang Y; Liu S; Yu W
    ACS Appl Bio Mater; 2020 Oct; 3(10):6959-6966. PubMed ID: 35019355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant Biomimetic Principles of Multifunctional Soft Composite Development: A Synergistic Approach Enabling Shape Morphing and Mechanical Robustness.
    Shteinberg G; Haj-Ali R; Libonati F; Sharabi M
    ACS Biomater Sci Eng; 2024 Jun; 10(6):3707-3717. PubMed ID: 38380517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PEG-Induced Controllable Thin-Thickness Gradient and Water Retention: A Simple Way to Programme Deformation of Hydrogel Actuators.
    Yang Y; Wang T; Tian F; Wang X; Hu Y; Xia X; Xu S
    Macromol Rapid Commun; 2021 Jul; 42(14):e2000749. PubMed ID: 34128581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular Assembly of Shape Memory and Actuating Hydrogels for Programmable Shape Transformation.
    Zhuo J; Wu B; Zhang J; Peng Y; Lu H; Le X; Wei S; Chen T
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3551-3558. PubMed ID: 34986635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Anisotropic Hydrogel Based on Mussel-Inspired Conductive Ferrofluid Composed of Electromagnetic Nanohybrids.
    Liu K; Han L; Tang P; Yang K; Gan D; Wang X; Wang K; Ren F; Fang L; Xu Y; Lu Z; Lu X
    Nano Lett; 2019 Dec; 19(12):8343-8356. PubMed ID: 31659907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shape-Preserved Transformation of Biological Cells into Synthetic Hydrogel Microparticles.
    Meyer KC; Labriola NR; Darling EM; Kaehr B
    Adv Biosyst; 2019 Apr; 3(4):e1800285. PubMed ID: 32627427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photodirected Morphing Structures of Nanocomposite Shape Memory Hydrogel with High Stiffness and Toughness.
    Dai CF; Du C; Xue Y; Zhang XN; Zheng SY; Liu K; Wu ZL; Zheng Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43631-43640. PubMed ID: 31664813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cardiomyocyte-Driven Structural Color Actuation in Anisotropic Inverse Opals.
    Shang Y; Chen Z; Fu F; Sun L; Shao C; Jin W; Liu H; Zhao Y
    ACS Nano; 2019 Jan; 13(1):796-802. PubMed ID: 30566827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle-Inspired Highly Anisotropic, Strong, Ion-Conductive Hydrogels.
    Kong W; Wang C; Jia C; Kuang Y; Pastel G; Chen C; Chen G; He S; Huang H; Zhang J; Wang S; Hu L
    Adv Mater; 2018 Sep; 30(39):e1801934. PubMed ID: 30101467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue.
    Schmidt JL; Tweten DJ; Benegal AN; Walker CH; Portnoi TE; Okamoto RJ; Garbow JR; Bayly PV
    J Biomech; 2016 May; 49(7):1042-1049. PubMed ID: 26920505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinspired Liquid Crystalline Spinning Enables Scalable Fabrication of High-Performing Fibrous Artificial Muscles.
    Hou W; Wang J; Lv JA
    Adv Mater; 2023 Apr; 35(16):e2211800. PubMed ID: 36812485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flower-like Photonic Hydrogel with Superstructure Induced via Modulated Shear Field.
    Ye YN; Haque MA; Inoue A; Katsuyama Y; Kurokawa T; Gong JP
    ACS Macro Lett; 2021 Jun; 10(6):708-713. PubMed ID: 35549109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH Oscillator-Driven Jellyfish-like Hydrogel Actuator with Dissipative Synergy between Deformation and Fluorescence Color Change.
    Yang C; Su F; Xu Y; Ma Y; Tang L; Zhou N; Liang E; Wang G; Tang J
    ACS Macro Lett; 2022 Mar; 11(3):347-353. PubMed ID: 35575373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust Multiscale-Oriented Thermoresponsive Fibrous Hydrogels with Rapid Self-Recovery and Ultrafast Response Underwater.
    Mu Q; Zhang Q; Yu W; Su M; Cai Z; Cui K; Ye Y; Liu X; Deng L; Chen B; Yang N; Chen L; Tao L; Wei Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33152-33162. PubMed ID: 32584536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tough Interfacial Adhesion of Bilayer Hydrogels with Integrated Shape Memory and Elastic Properties for Controlled Shape Deformation.
    Wang Q; Liu Z; Tang C; Sun H; Zhu L; Liu Z; Li K; Yang J; Qin G; Sun G; Chen Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10457-10466. PubMed ID: 33616384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anisotropic, porous hydrogels templated by lyotropic chromonic liquid crystals.
    Wang S; Maruri DP; Boothby JM; Lu X; Rivera-Tarazona LK; Varner VD; Ware TH
    J Mater Chem B; 2020 Aug; 8(31):6988-6998. PubMed ID: 32626869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soft three-dimensional network materials with rational bio-mimetic designs.
    Yan D; Chang J; Zhang H; Liu J; Song H; Xue Z; Zhang F; Zhang Y
    Nat Commun; 2020 Mar; 11(1):1180. PubMed ID: 32132524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.