These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas. Kocak B; Durmaz ES; Kaya OK; Kilickesmez O Acta Radiol; 2020 Jun; 61(6):856-864. PubMed ID: 31635476 [TBL] [Abstract][Full Text] [Related]
10. Diagnosis of Sarcomatoid Renal Cell Carcinoma With CT: Evaluation by Qualitative Imaging Features and Texture Analysis. Schieda N; Thornhill RE; Al-Subhi M; McInnes MD; Shabana WM; van der Pol CB; Flood TA AJR Am J Roentgenol; 2015 May; 204(5):1013-23. PubMed ID: 25905936 [TBL] [Abstract][Full Text] [Related]
11. CT Textural Analysis of Large Primary Renal Cell Carcinomas: Pretreatment Tumor Heterogeneity Correlates With Histologic Findings and Clinical Outcomes. Lubner MG; Stabo N; Abel EJ; Del Rio AM; Pickhardt PJ AJR Am J Roentgenol; 2016 Jul; 207(1):96-105. PubMed ID: 27145377 [TBL] [Abstract][Full Text] [Related]
12. Radiogenomics in Clear Cell Renal Cell Carcinoma: Correlations Between Advanced CT Imaging (Texture Analysis) and MicroRNAs Expression. Marigliano C; Badia S; Bellini D; Rengo M; Caruso D; Tito C; Miglietta S; Palleschi G; Pastore AL; Carbone A; Fazi F; Petrozza V; Laghi A Technol Cancer Res Treat; 2019 Jan; 18():1533033819878458. PubMed ID: 31564221 [TBL] [Abstract][Full Text] [Related]
13. Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics. Cui E; Li Z; Ma C; Li Q; Lei Y; Lan Y; Yu J; Zhou Z; Li R; Long W; Lin F Eur Radiol; 2020 May; 30(5):2912-2921. PubMed ID: 32002635 [TBL] [Abstract][Full Text] [Related]
14. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Ding J; Xing Z; Jiang Z; Chen J; Pan L; Qiu J; Xing W Eur J Radiol; 2018 Jun; 103():51-56. PubMed ID: 29803385 [TBL] [Abstract][Full Text] [Related]
15. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Feng Z; Rong P; Cao P; Zhou Q; Zhu W; Yan Z; Liu Q; Wang W Eur Radiol; 2018 Apr; 28(4):1625-1633. PubMed ID: 29134348 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive texture feature analysis framework of renal cell carcinoma: pathological, prognostic, and genomic evaluation based on CT images. Wu K; Wu P; Yang K; Li Z; Kong S; Yu L; Zhang E; Liu H; Guo Q; Wu S Eur Radiol; 2022 Apr; 32(4):2255-2265. PubMed ID: 34800150 [TBL] [Abstract][Full Text] [Related]
17. Texture analysis and machine learning algorithms accurately predict histologic grade in small (< 4 cm) clear cell renal cell carcinomas: a pilot study. Haji-Momenian S; Lin Z; Patel B; Law N; Michalak A; Nayak A; Earls J; Loew M Abdom Radiol (NY); 2020 Mar; 45(3):789-798. PubMed ID: 31822969 [TBL] [Abstract][Full Text] [Related]
18. Textural differences in apparent diffusion coefficient between low- and high-stage clear cell renal cell carcinoma. Kierans AS; Rusinek H; Lee A; Shaikh MB; Triolo M; Huang WC; Chandarana H AJR Am J Roentgenol; 2014 Dec; 203(6):W637-44. PubMed ID: 25415729 [TBL] [Abstract][Full Text] [Related]
19. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Lee H; Hong H; Kim J; Jung DC Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742 [TBL] [Abstract][Full Text] [Related]
20. Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat. Yang R; Wu J; Sun L; Lai S; Xu Y; Liu X; Ma Y; Zhen X Eur Radiol; 2020 Feb; 30(2):1254-1263. PubMed ID: 31468159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]