These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33852355)

  • 1. Assessment of Renal Cell Carcinoma by Texture Analysis in Clinical Practice: A Six-Site, Six-Platform Analysis of Reliability.
    Doshi AM; Tong A; Davenport MS; Khalaf AM; Mresh R; Rusinek H; Schieda N; Shinagare AB; Smith AD; Thornhill R; Vikram R; Chandarana H
    AJR Am J Roentgenol; 2021 Nov; 217(5):1132-1140. PubMed ID: 33852355
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of CT Texture Analysis Software Platforms in Renal Cell Carcinoma: Reproducibility of Numerical Values and Association With Histologic Subtype Across Platforms.
    Dreyfuss LD; Abel EJ; Nystrom J; Stabo NJ; Pickhardt PJ; Lubner MG
    AJR Am J Roentgenol; 2021 Jun; 216(6):1549-1557. PubMed ID: 33852332
    [No Abstract]   [Full Text] [Related]  

  • 3. Reliability of Single-Slice-Based 2D CT Texture Analysis of Renal Masses: Influence of Intra- and Interobserver Manual Segmentation Variability on Radiomic Feature Reproducibility.
    Kocak B; Durmaz ES; Kaya OK; Ates E; Kilickesmez O
    AJR Am J Roentgenol; 2019 Aug; 213(2):377-383. PubMed ID: 31063427
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of renal masses with MRI-based radiomics: assessment of inter-package and inter-observer reproducibility in a prospective pilot study.
    Al-Mubarak H; Bane O; Gillingham N; Kyriakakos C; Abboud G; Cuevas J; Gonzalez J; Meilika K; Horowitz A; Huang HV; Daza J; Fauveau V; Badani K; Viswanath SE; Taouli B; Lewis S
    Abdom Radiol (NY); 2024 Oct; 49(10):3464-3475. PubMed ID: 38467854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas.
    Kocak B; Ates E; Durmaz ES; Ulusan MB; Kilickesmez O
    Eur Radiol; 2019 Sep; 29(9):4765-4775. PubMed ID: 30747300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study.
    Goyal A; Razik A; Kandasamy D; Seth A; Das P; Ganeshan B; Sharma R
    Abdom Radiol (NY); 2019 Oct; 44(10):3336-3349. PubMed ID: 31300850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Texture analysis of small renal cell carcinomas at MDCT for predicting relevant histologic and protein biomarkers.
    Scrima AT; Lubner MG; Abel EJ; Havighurst TC; Shapiro DD; Huang W; Pickhardt PJ
    Abdom Radiol (NY); 2019 Jun; 44(6):1999-2008. PubMed ID: 29804215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiogenomics in Clear Cell Renal Cell Carcinoma: Machine Learning-Based High-Dimensional Quantitative CT Texture Analysis in Predicting PBRM1 Mutation Status.
    Kocak B; Durmaz ES; Ates E; Ulusan MB
    AJR Am J Roentgenol; 2019 Mar; 212(3):W55-W63. PubMed ID: 30601030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas.
    Kocak B; Durmaz ES; Kaya OK; Kilickesmez O
    Acta Radiol; 2020 Jun; 61(6):856-864. PubMed ID: 31635476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnosis of Sarcomatoid Renal Cell Carcinoma With CT: Evaluation by Qualitative Imaging Features and Texture Analysis.
    Schieda N; Thornhill RE; Al-Subhi M; McInnes MD; Shabana WM; van der Pol CB; Flood TA
    AJR Am J Roentgenol; 2015 May; 204(5):1013-23. PubMed ID: 25905936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CT Textural Analysis of Large Primary Renal Cell Carcinomas: Pretreatment Tumor Heterogeneity Correlates With Histologic Findings and Clinical Outcomes.
    Lubner MG; Stabo N; Abel EJ; Del Rio AM; Pickhardt PJ
    AJR Am J Roentgenol; 2016 Jul; 207(1):96-105. PubMed ID: 27145377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiogenomics in Clear Cell Renal Cell Carcinoma: Correlations Between Advanced CT Imaging (Texture Analysis) and MicroRNAs Expression.
    Marigliano C; Badia S; Bellini D; Rengo M; Caruso D; Tito C; Miglietta S; Palleschi G; Pastore AL; Carbone A; Fazi F; Petrozza V; Laghi A
    Technol Cancer Res Treat; 2019 Jan; 18():1533033819878458. PubMed ID: 31564221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics.
    Cui E; Li Z; Ma C; Li Q; Lei Y; Lan Y; Yu J; Zhou Z; Li R; Long W; Lin F
    Eur Radiol; 2020 May; 30(5):2912-2921. PubMed ID: 32002635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma.
    Ding J; Xing Z; Jiang Z; Chen J; Pan L; Qiu J; Xing W
    Eur J Radiol; 2018 Jun; 103():51-56. PubMed ID: 29803385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.
    Feng Z; Rong P; Cao P; Zhou Q; Zhu W; Yan Z; Liu Q; Wang W
    Eur Radiol; 2018 Apr; 28(4):1625-1633. PubMed ID: 29134348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive texture feature analysis framework of renal cell carcinoma: pathological, prognostic, and genomic evaluation based on CT images.
    Wu K; Wu P; Yang K; Li Z; Kong S; Yu L; Zhang E; Liu H; Guo Q; Wu S
    Eur Radiol; 2022 Apr; 32(4):2255-2265. PubMed ID: 34800150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Texture analysis and machine learning algorithms accurately predict histologic grade in small (< 4 cm) clear cell renal cell carcinomas: a pilot study.
    Haji-Momenian S; Lin Z; Patel B; Law N; Michalak A; Nayak A; Earls J; Loew M
    Abdom Radiol (NY); 2020 Mar; 45(3):789-798. PubMed ID: 31822969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Textural differences in apparent diffusion coefficient between low- and high-stage clear cell renal cell carcinoma.
    Kierans AS; Rusinek H; Lee A; Shaikh MB; Triolo M; Huang WC; Chandarana H
    AJR Am J Roentgenol; 2014 Dec; 203(6):W637-44. PubMed ID: 25415729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation.
    Lee H; Hong H; Kim J; Jung DC
    Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat.
    Yang R; Wu J; Sun L; Lai S; Xu Y; Liu X; Ma Y; Zhen X
    Eur Radiol; 2020 Feb; 30(2):1254-1263. PubMed ID: 31468159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.