BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33852598)

  • 1. Physiological and subjective comfort evaluation under different airflow directions in a cooling environment.
    Tamura K; Matsumoto S; Tseng YH; Kobayashi T; Miwa J; Miyazawa K; Hirao T; Matsumoto S; Hiramatsu S; Otake H; Okamoto T
    PLoS One; 2021; 16(4):e0249235. PubMed ID: 33852598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological comfort evaluation under different airflow directions in a heating environment.
    Tamura K; Matsumoto S; Tseng YH; Kobayashi T; Miwa J; Miyazawa K; Matsumoto S; Hiramatsu S; Otake H; Okamoto T
    J Physiol Anthropol; 2022 Apr; 41(1):16. PubMed ID: 35428365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal sensation and comfort during exposure to local airflow to face or legs.
    Yamashita K; Matsuo J; Tochihara Y; Kondo Y; Takayama S; Nagayama H
    J Physiol Anthropol Appl Human Sci; 2005 Jan; 24(1):61-6. PubMed ID: 15684546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological activity in calm thermal indoor environments.
    Okamoto T; Tamura K; Miyamoto N; Tanaka S; Futaeda T
    Sci Rep; 2017 Sep; 7(1):11519. PubMed ID: 28912456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and subjective responses in the elderly when using floor heating and air conditioning systems.
    Hashiguchi N; Tochihara Y; Ohnaka T; Tsuchida C; Otsuki T
    J Physiol Anthropol Appl Human Sci; 2004 Nov; 23(6):205-13. PubMed ID: 15599064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal sensations and comfort investigations in transient conditions in tropical office.
    Dahlan ND; Gital YY
    Appl Ergon; 2016 May; 54():169-76. PubMed ID: 26851476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of dynamic airflow on human thermal response.
    Zhou X; Ouyang Q; Lin G; Zhu Y
    Indoor Air; 2006 Oct; 16(5):348-55. PubMed ID: 16948711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of respirator ambient air cooling on thermophysiological responses and comfort sensations.
    Caretti DM; Barker DJ
    J Occup Environ Hyg; 2014; 11(5):269-81. PubMed ID: 24730706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of airflow on body temperatures and sleep stages in a warm humid climate.
    Tsuzuki K; Okamoto-Mizuno K; Mizuno K; Iwaki T
    Int J Biometeorol; 2008 Mar; 52(4):261-70. PubMed ID: 17899214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of thermal comfort conditions in a classroom with three ventilation methods.
    Fong ML; Lin Z; Fong KF; Chow TT; Yao T
    Indoor Air; 2011 Jun; 21(3):231-9. PubMed ID: 21204985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.
    Schellen L; Loomans MG; de Wit MH; Olesen BW; van Marken Lichtenbelt WD
    Physiol Behav; 2012 Sep; 107(2):252-61. PubMed ID: 22877870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air quality and passenger comfort in an air-conditioned bus micro-environment.
    Zhu X; Lei L; Wang X; Zhang Y
    Environ Monit Assess; 2018 Apr; 190(5):276. PubMed ID: 29651634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human cognitive functions and psycho-physiological responses under low thermal conditions in a simulated office environment.
    Sepehri S; Aliabadi M; Golmohammadi R; Babamiri M
    Work; 2021; 69(1):197-207. PubMed ID: 33998583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated airflow can maintain sleep quality and thermal comfort of the elderly in a hot environment.
    Lan L; Xia L; Tang J; Zhang X; Lin Y; Wang Z
    Indoor Air; 2019 Nov; 29(6):1040-1049. PubMed ID: 31463952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort.
    Zhou X; Ouyang Q; Zhu Y; Feng C; Zhang X
    Indoor Air; 2014 Apr; 24(2):171-7. PubMed ID: 23980928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal comfort in environments with different vertical air temperature gradients.
    Möhlenkamp M; Schmidt M; Wesseling M; Wick A; Gores I; Müller D
    Indoor Air; 2019 Jan; 29(1):101-111. PubMed ID: 30339306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and psychological reactions of sub-tropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70.
    Fan X; Liu W; Wargocki P
    Indoor Air; 2019 Mar; 29(2):215-230. PubMed ID: 30474277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental investigation into the interaction between the human body and room airflow and its effect on thermal comfort under stratum ventilation.
    Cheng Y; Lin Z
    Indoor Air; 2016 Apr; 26(2):274-85. PubMed ID: 25857272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences between young adults and elderly in thermal comfort, productivity, and thermal physiology in response to a moderate temperature drift and a steady-state condition.
    Schellen L; van Marken Lichtenbelt WD; Loomans MG; Toftum J; de Wit MH
    Indoor Air; 2010 Aug; 20(4):273-83. PubMed ID: 20557374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.