These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33852741)

  • 21. Brief communication: Comparison of methods for estimating chronological age at linear enamel formation on anterior dentition.
    Martin SA; Guatelli-Steinberg D; Sciulli PW; Walker PL
    Am J Phys Anthropol; 2008 Mar; 135(3):362-5. PubMed ID: 18046776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brief communication: linear enamel hypoplasia and the shift from irregular to regular provisioning in Cayo Santiago rhesus monkeys (Macaca mulatta).
    Guatelli-Steinberg D; Benderlioglu Z
    Am J Phys Anthropol; 2006 Nov; 131(3):416-9. PubMed ID: 16617431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioarchaeology of adaptation to a marginal environment in bronze age Western China.
    Berger E; Wang H
    Am J Hum Biol; 2017 Jul; 29(4):. PubMed ID: 28121384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linear enamel hypoplasia and historical change in a central Australian community.
    Littleton J; Townsend GC
    Aust Dent J; 2005 Jun; 50(2):101-7. PubMed ID: 16050089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasticity and constraint in response to early-life stressors among late/final Jomon period foragers from Japan: evidence for life history trade-offs from incremental microstructures of enamel.
    Temple DH
    Am J Phys Anthropol; 2014 Dec; 155(4):537-45. PubMed ID: 25156299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study of stress episode prevalence and duration among Jomon period foragers from Hokkaido.
    Temple DH; McGroarty JN; Guatelli-Steinberg D; Nakatsukasa M; Matsumura H
    Am J Phys Anthropol; 2013 Oct; 152(2):230-8. PubMed ID: 23996633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epidemiology of enamel hypoplasia in deciduous teeth: explaining variation in prevalence in western India.
    Lukacs JR; Walimbe SR; Floyd B
    Am J Hum Biol; 2001; 13(6):788-807. PubMed ID: 11748818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. No significant difference in the levels of dental fluctuating asymmetry between hypoplastic and non-hypoplastic skeletal groups from the Joseon Dynasty (mid 15th-early 20th century), South Korea.
    Jeong Y; Woo EJ; Pak S
    Arch Oral Biol; 2013 Aug; 58(8):1047-56. PubMed ID: 23528063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative genetic analyses of postcanine morphological crown variation.
    Stojanowski CM; Paul KS; Seidel AC; Duncan WN; Guatelli-Steinberg D
    Am J Phys Anthropol; 2019 Mar; 168(3):606-631. PubMed ID: 30747449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heritability and genetic integration of tooth size in the South Carolina Gullah.
    Stojanowski CM; Paul KS; Seidel AC; Duncan WN; Guatelli-Steinberg D
    Am J Phys Anthropol; 2017 Nov; 164(3):505-521. PubMed ID: 28832922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enamel hypoplasia in relation to caries in Guatemalan children.
    Infante PF; Gillespie GM
    J Dent Res; 1977 May; 56(5):493-8. PubMed ID: 267103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prevalence and etiology of linear enamel hypoplasia in monkeys and apes from Asia and Africa.
    Guatelli-Steinberg D; Skinner M
    Folia Primatol (Basel); 2000; 71(3):115-32. PubMed ID: 10828689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age of linear enamel hypoplasia formation based on Massler and colleagues' and Reid and Dean's standards in a Polish sample dated to 13th-18th century CE.
    Lukasik S; Krenz-NiedbaƂa M
    Homo; 2014 Aug; 65(4):296-310. PubMed ID: 24767821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A bioarchaeological analysis of oral and physiological health on the south coast of New Guinea.
    Kinaston RL; Roberts GL; Buckley HR; Oxenham M
    Am J Phys Anthropol; 2016 Jul; 160(3):414-26. PubMed ID: 26990104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis and significance of linear enamel hypoplasia in Plio-Pleistocene hominins.
    Guatelli-Steinberg D
    Am J Phys Anthropol; 2004 Mar; 123(3):199-215. PubMed ID: 14968419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. More on molar incisor hypomineralisation (MIH) and linear enamel hypoplasia (LEH) in archaeological human remains.
    Gualdi-Russo E; Zedda N; Esposito V; Masotti S
    Clin Oral Investig; 2017 Sep; 21(7):2153-2154. PubMed ID: 28741173
    [No Abstract]   [Full Text] [Related]  

  • 37. Aspects of health in prehistoric mainland Southeast Asia: Indicators of stress in response to the intensification of rice agriculture.
    Clark AL; Tayles N; Halcrow SE
    Am J Phys Anthropol; 2014 Mar; 153(3):484-95. PubMed ID: 24338598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterns of systemic stress during the agricultural transition in prehistoric Japan.
    Temple DH
    Am J Phys Anthropol; 2010 May; 142(1):112-24. PubMed ID: 19953616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dental enamel defects in German medieval and early-modern-age populations.
    Lang J; Birkenbeil S; Bock S; Heinrich-Weltzien R; Kromeyer-Hauschild K
    Anthropol Anz; 2016 Nov; 73(4):343-354. PubMed ID: 27643784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The aetiology of developmental defects of enamel: a prevalence and family study in East London, U.K.
    Brook AH; Smith JM
    Connect Tissue Res; 1998; 39(1-3):151-6; discussion 187-94. PubMed ID: 11062996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.