These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 33852815)
21. Short-term costs of integrating whole-genome sequencing into primary care and cardiology settings: a pilot randomized trial. Christensen KD; Vassy JL; Phillips KA; Blout CL; Azzariti DR; Lu CY; Robinson JO; Lee K; Douglas MP; Yeh JM; Machini K; Stout NK; Rehm HL; McGuire AL; Green RC; Dukhovny D; Genet Med; 2018 Dec; 20(12):1544-1553. PubMed ID: 29565423 [TBL] [Abstract][Full Text] [Related]
22. Estimating the costs of genomic sequencing in cancer control. Gordon LG; White NM; Elliott TM; Nones K; Beckhouse AG; Rodriguez-Acevedo AJ; Webb PM; Lee XJ; Graves N; Schofield DJ BMC Health Serv Res; 2020 Jun; 20(1):492. PubMed ID: 32493298 [TBL] [Abstract][Full Text] [Related]
23. Parents of a child with epilepsy: Views and expectations on receiving genetic results from Whole Genome Sequencing. Jaitovich Groisman I; Hurlimann T; Godard B Epilepsy Behav; 2019 Jan; 90():178-190. PubMed ID: 30583270 [TBL] [Abstract][Full Text] [Related]
24. Whole exome sequencing in molecular diagnostics of cancer decreases over time: evidence from a cost analysis in the French setting. Bayle A; Droin N; Besse B; Zou Z; Boursin Y; Rissel S; Solary E; Lacroix L; Rouleau E; Borget I; Bonastre J Eur J Health Econ; 2021 Aug; 22(6):855-864. PubMed ID: 33765190 [TBL] [Abstract][Full Text] [Related]
25. Shallow whole-genome sequencing of plasma cell-free DNA accurately differentiates small from non-small cell lung carcinoma. Raman L; Van der Linden M; Van der Eecken K; Vermaelen K; Demedts I; Surmont V; Himpe U; Dedeurwaerdere F; Ferdinande L; Lievens Y; Claes K; Menten B; Van Dorpe J Genome Med; 2020 Apr; 12(1):35. PubMed ID: 32317009 [TBL] [Abstract][Full Text] [Related]
26. Clinical Validation of Whole Genome Sequencing for Cancer Diagnostics. Roepman P; de Bruijn E; van Lieshout S; Schoenmaker L; Boelens MC; Dubbink HJ; Geurts-Giele WRR; Groenendijk FH; Huibers MMH; Kranendonk MEG; Roemer MGM; Samsom KG; Steehouwer M; de Leng WWJ; Hoischen A; Ylstra B; Monkhorst K; van der Hoeven JJM; Cuppen E J Mol Diagn; 2021 Jul; 23(7):816-833. PubMed ID: 33964451 [TBL] [Abstract][Full Text] [Related]
27. Whole genome sequencing as a diagnostic test: challenges and opportunities. Chrystoja CC; Diamandis EP Clin Chem; 2014 May; 60(5):724-33. PubMed ID: 24227285 [TBL] [Abstract][Full Text] [Related]
28. A scoping study to explore the cost-effectiveness of next-generation sequencing compared with traditional genetic testing for the diagnosis of learning disabilities in children. Beale S; Sanderson D; Sanniti A; Dundar Y; Boland A Health Technol Assess; 2015 Jun; 19(46):1-90. PubMed ID: 26132578 [TBL] [Abstract][Full Text] [Related]
29. Whole-genome and targeted sequencing of drug-resistant Mycobacterium tuberculosis on the iSeq100 and MiSeq: A performance, ease-of-use, and cost evaluation. Colman RE; Mace A; Seifert M; Hetzel J; Mshaiel H; Suresh A; Lemmer D; Engelthaler DM; Catanzaro DG; Young AG; Denkinger CM; Rodwell TC PLoS Med; 2019 Apr; 16(4):e1002794. PubMed ID: 31039166 [TBL] [Abstract][Full Text] [Related]
30. GT-WGS: an efficient and economic tool for large-scale WGS analyses based on the AWS cloud service. Wang Y; Li G; Ma M; He F; Song Z; Zhang W; Wu C BMC Genomics; 2018 Jan; 19(Suppl 1):959. PubMed ID: 29363427 [TBL] [Abstract][Full Text] [Related]
31. A microcosting and cost-consequence analysis of clinical genomic testing strategies in autism spectrum disorder. Tsiplova K; Zur RM; Marshall CR; Stavropoulos DJ; Pereira SL; Merico D; Young EJ; Sung WWL; Scherer SW; Ungar WJ Genet Med; 2017 Nov; 19(11):1268-1275. PubMed ID: 28471434 [TBL] [Abstract][Full Text] [Related]
32. Challenging gold standard hematology diagnostics through the introduction of whole genome sequencing and artificial intelligence. Haferlach T; Walter W Int J Lab Hematol; 2023 Apr; 45(2):156-162. PubMed ID: 36737231 [TBL] [Abstract][Full Text] [Related]
34. Continuing the sequence? Towards an economic evaluation of whole genome sequencing for the diagnosis of rare diseases in Scotland. Abbott M; McKenzie L; Moran BVG; Heidenreich S; Hernández R; Hocking-Mennie L; Clark C; Gomes J; Lampe A; Baty D; McGowan R; Miedzybrodzka Z; Ryan M J Community Genet; 2022 Oct; 13(5):487-501. PubMed ID: 34415556 [TBL] [Abstract][Full Text] [Related]
36. The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom. Schwarze K; Buchanan J; Fermont JM; Dreau H; Tilley MW; Taylor JM; Antoniou P; Knight SJL; Camps C; Pentony MM; Kvikstad EM; Harris S; Popitsch N; Pagnamenta AT; Schuh A; Taylor JC; Wordsworth S Genet Med; 2020 Jan; 22(1):85-94. PubMed ID: 31358947 [TBL] [Abstract][Full Text] [Related]
37. Cost-Effectiveness of Personalized Screening for Colorectal Cancer Based on Polygenic Risk and Family History. Cenin DR; Naber SK; de Weerdt AC; Jenkins MA; Preen DB; Ee HC; O'Leary PC; Lansdorp-Vogelaar I Cancer Epidemiol Biomarkers Prev; 2020 Jan; 29(1):10-21. PubMed ID: 31748260 [TBL] [Abstract][Full Text] [Related]
38. The cost-effectiveness of whole genome sequencing in neurodevelopmental disorders. Runheim H; Pettersson M; Hammarsjö A; Nordgren A; Henriksson M; Lindstrand A; Levin LÅ; Soller MJ Sci Rep; 2023 Apr; 13(1):6904. PubMed ID: 37106068 [TBL] [Abstract][Full Text] [Related]
39. A Simple Practical Guide to Genomic Diagnostics in a Pediatric Setting. Taylor A; Alloub Z; Tayoun AA Genes (Basel); 2021 May; 12(6):. PubMed ID: 34071827 [TBL] [Abstract][Full Text] [Related]
40. [Cost-effectiveness evaluation of predictive molecular diagnostics using the example of hereditary non-polyposis colorectal cancer (HNPCC)]. Hagen A; Hessabi HK; Gorenoi V; Schönermark MP Gesundheitswesen; 2008 Jan; 70(1):18-27. PubMed ID: 18273760 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]