These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33853038)
1. Deep convolutional autoencoder for the simultaneous removal of baseline noise and baseline drift in chromatograms. Kensert A; Collaerts G; Efthymiadis K; Van Broeck P; Desmet G; Cabooter D J Chromatogr A; 2021 Jun; 1646():462093. PubMed ID: 33853038 [TBL] [Abstract][Full Text] [Related]
2. Automated tuning of denoising algorithms for noise removal in chromatograms. Bosten E; Van Broeck P; Cabooter D J Chromatogr A; 2023 Oct; 1709():464360. PubMed ID: 37725870 [TBL] [Abstract][Full Text] [Related]
3. Dual Autoencoder Network with Separable Convolutional Layers for Denoising and Deblurring Images. Solovyeva E; Abdullah A J Imaging; 2022 Sep; 8(9):. PubMed ID: 36135415 [TBL] [Abstract][Full Text] [Related]
4. Convolutional neural network for automated peak detection in reversed-phase liquid chromatography. Kensert A; Bosten E; Collaerts G; Efthymiadis K; Van Broeck P; Desmet G; Cabooter D J Chromatogr A; 2022 Jun; 1672():463005. PubMed ID: 35430477 [TBL] [Abstract][Full Text] [Related]
5. Removing Noise from Extracellular Neural Recordings Using Fully Convolutional Denoising Autoencoders. Kechris C; Delitzas A; Matsoukas V; Petrantonakis PC Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():890-893. PubMed ID: 34891433 [TBL] [Abstract][Full Text] [Related]
6. Critical comparison of background correction algorithms used in chromatography. Niezen LE; Schoenmakers PJ; Pirok BWJ Anal Chim Acta; 2022 Apr; 1201():339605. PubMed ID: 35300799 [TBL] [Abstract][Full Text] [Related]
7. Leveraging probabilistic peak detection to estimate baseline drift in complex chromatographic samples. Lopatka M; Barcaru A; Sjerps MJ; Vivó-Truyols G J Chromatogr A; 2016 Jan; 1431():122-130. PubMed ID: 26774434 [TBL] [Abstract][Full Text] [Related]
8. Use of a Tracer-Specific Deep Artificial Neural Net to Denoise Dynamic PET Images. Klyuzhin IS; Cheng JC; Bevington C; Sossi V IEEE Trans Med Imaging; 2020 Feb; 39(2):366-376. PubMed ID: 31283475 [TBL] [Abstract][Full Text] [Related]
9. A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets. Pintelas E; Livieris IE; Pintelas PE Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833805 [TBL] [Abstract][Full Text] [Related]
10. Transfer learning for denoising the echolocation clicks of finless porpoise (Neophocaena phocaenoides sunameri) using deep convolutional autoencoders. Yang W; Chang W; Song Z; Zhang Y; Wang X J Acoust Soc Am; 2021 Aug; 150(2):1243. PubMed ID: 34470267 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the effectiveness of a classification method based on improved DAE feature extraction for hepatitis C prediction. Zhang L; Wang J; Chang R; Wang W Sci Rep; 2024 Apr; 14(1):9143. PubMed ID: 38644402 [TBL] [Abstract][Full Text] [Related]
12. Fault Diagnosis of Rotating Machinery under Noisy Environment Conditions Based on a 1-D Convolutional Autoencoder and 1-D Convolutional Neural Network. Liu X; Zhou Q; Zhao J; Shen H; Xiong X Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823579 [TBL] [Abstract][Full Text] [Related]
13. Unsupervised abnormality detection through mixed structure regularization (MSR) in deep sparse autoencoders. Freiman M; Manjeshwar R; Goshen L Med Phys; 2019 May; 46(5):2223-2231. PubMed ID: 30821364 [TBL] [Abstract][Full Text] [Related]
14. A Monte Carlo based scatter removal method for non-isocentric cone-beam CT acquisitions using a deep convolutional autoencoder. van der Heyden B; Uray M; Fonseca GP; Huber P; Us D; Messner I; Law A; Parii A; Reisz N; Rinaldi I; Vilches Freixas G; Deutschmann H; Verhaegen F; Steininger P Phys Med Biol; 2020 Jul; 65(14):145002. PubMed ID: 32294626 [TBL] [Abstract][Full Text] [Related]
15. Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network. Jiang D; Dou W; Vosters L; Xu X; Sun Y; Tan T Jpn J Radiol; 2018 Sep; 36(9):566-574. PubMed ID: 29982919 [TBL] [Abstract][Full Text] [Related]
16. Robust North Atlantic right whale detection using deep learning models for denoising. Vickers W; Milner B; Risch D; Lee R J Acoust Soc Am; 2021 Jun; 149(6):3797. PubMed ID: 34241455 [TBL] [Abstract][Full Text] [Related]
17. Denoising and Baseline Correction Methods for Raman Spectroscopy Based on Convolutional Autoencoder: A Unified Solution. Han M; Dang Y; Han J Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794016 [TBL] [Abstract][Full Text] [Related]
18. Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid, uric acid, dopamine and nitrite: application of non-bilinear voltammetric data for exploiting first-order advantage. Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T Talanta; 2014 Feb; 119():553-63. PubMed ID: 24401455 [TBL] [Abstract][Full Text] [Related]
19. Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder. Shi H; Chen J; Si J; Zheng C Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050210 [TBL] [Abstract][Full Text] [Related]
20. Peak alignment using wavelet pattern matching and differential evolution. Zhang ZM; Chen S; Liang YZ Talanta; 2011 Jan; 83(4):1108-17. PubMed ID: 21215845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]