These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33853539)

  • 21. The superiority of the time-to-event continual reassessment method to the rolling six design in pediatric oncology Phase I trials.
    Zhao L; Lee J; Mody R; Braun TM
    Clin Trials; 2011 Aug; 8(4):361-9. PubMed ID: 21610004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase I study of continuous MKC-1 in patients with advanced or metastatic solid malignancies using the modified Time-to-Event Continual Reassessment Method (TITE-CRM) dose escalation design.
    Tevaarwerk A; Wilding G; Eickhoff J; Chappell R; Sidor C; Arnott J; Bailey H; Schelman W; Liu G
    Invest New Drugs; 2012 Jun; 30(3):1039-45. PubMed ID: 21225315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new fully human recombinant FSH (follitropin epsilon): two phase I randomized placebo and comparator-controlled pharmacokinetic and pharmacodynamic trials.
    Abd-Elaziz K; Duijkers I; Stöckl L; Dietrich B; Klipping C; Eckert K; Goletz S
    Hum Reprod; 2017 Aug; 32(8):1639-1647. PubMed ID: 28591833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-to-event calibration-free odds design: A robust efficient design for phase I trials with late-onset outcomes.
    Jin H; Yin G
    Pharm Stat; 2023; 22(5):773-783. PubMed ID: 37095681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of Deviation From Planned Cohort Size and Operating Characteristics of Phase 1 Trials.
    Park M; Liu S; Yap TA; Yuan Y
    JAMA Netw Open; 2021 Feb; 4(2):e2037563. PubMed ID: 33595664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rolling continual reassessment method with overdose control: An efficient and safe dose escalation design.
    Zhu J; Sabanés Bové D; Liao Z; Beyer U; Yung G; Sarkar S
    Contemp Clin Trials; 2021 Aug; 107():106436. PubMed ID: 34000410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A semi-mechanistic dose-finding design in oncology using pharmacokinetic/pharmacodynamic modeling.
    Su X; Li Y; Müller P; Hsu CW; Pan H; Do KA
    Pharm Stat; 2022 Nov; 21(6):1149-1166. PubMed ID: 35748220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of various continual reassessment method models for dose-escalation phase 1 oncology clinical trials: using real clinical data and simulation studies.
    James GD; Symeonides S; Marshall J; Young J; Clack G
    BMC Cancer; 2021 Jan; 21(1):7. PubMed ID: 33402104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Borrowing historical information to improve phase I clinical trials using meta-analytic-predictive priors.
    Chen X; Zhang J; Jiang Q; Yan F
    J Biopharm Stat; 2022 Jan; 32(1):34-52. PubMed ID: 35594366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A straightforward meta-analysis approach for oncology phase I dose-finding studies.
    Röver C; Ursino M; Friede T; Zohar S
    Stat Med; 2022 Sep; 41(20):3915-3940. PubMed ID: 35661205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continual reassessment method for dose escalation clinical trials in oncology: a comparison of prior skeleton approaches using AZD3514 data.
    James GD; Symeonides SN; Marshall J; Young J; Clack G
    BMC Cancer; 2016 Aug; 16(1):703. PubMed ID: 27581751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A clinical phase I dose-finding design with adaptive shrinking boundaries for drug combination trials.
    Li Z; Xu Z; Zhang A; Qi G; Li Z
    BMC Med Res Methodol; 2023 Mar; 23(1):57. PubMed ID: 36864387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Bayesian optimal interval design for dose optimization with a randomization scheme based on pharmacokinetics outcomes in oncology.
    Takeda K; Zhu J; Li R; Yamaguchi Y
    Pharm Stat; 2023; 22(6):1104-1115. PubMed ID: 37545018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TITE-gBOIN-ET: Time-to-event generalized Bayesian optimal interval design to accelerate dose-finding accounting for ordinal graded efficacy and toxicity outcomes.
    Takeda K; Yamaguchi Y; Taguri M; Morita S
    Biom J; 2023 Oct; 65(7):e2200265. PubMed ID: 37309248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bayesian modeling of a bivariate toxicity outcome for early phase oncology trials evaluating dose regimens.
    Gerard E; Zohar S; Lorenzato C; Ursino M; Riviere MK
    Stat Med; 2021 Oct; 40(23):5096-5114. PubMed ID: 34259343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase I design for completely or partially ordered treatment schedules.
    Wages NA; O'Quigley J; Conaway MR
    Stat Med; 2014 Feb; 33(4):569-79. PubMed ID: 24114957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid continuous reassessment method with overdose control for safer dose escalation.
    Ghosh D; Xie H; Zhang L; Chen F; Mohanty S; Li X
    J Biopharm Stat; 2023 Sep; 33(5):586-595. PubMed ID: 36715485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. dfpk: An R-package for Bayesian dose-finding designs using pharmacokinetics (PK) for phase I clinical trials.
    Toumazi A; Comets E; Alberti C; Friede T; Lentz F; Stallard N; Zohar S; Ursino M
    Comput Methods Programs Biomed; 2018 Apr; 157():163-177. PubMed ID: 29477425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequential or combined designs for Phase I/II clinical trials? A simulation study.
    Rossoni C; Bardet A; Geoerger B; Paoletti X
    Clin Trials; 2019 Dec; 16(6):635-644. PubMed ID: 31538815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Escalation with overdose control for phase I drug-combination trials.
    Shi Y; Yin G
    Stat Med; 2013 Nov; 32(25):4400-12. PubMed ID: 23630103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.