BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 33853680)

  • 1. Hypoxic preconditioning induces epigenetic changes and modifies swine mesenchymal stem cell angiogenesis and senescence in experimental atherosclerotic renal artery stenosis.
    Isik B; Thaler R; Goksu BB; Conley SM; Al-Khafaji H; Mohan A; Afarideh M; Abumoawad AM; Zhu XY; Krier JD; Saadiq IM; Tang H; Eirin A; Hickson LJ; van Wijnen AJ; Textor SC; Lerman LO; Herrmann SM
    Stem Cell Res Ther; 2021 Apr; 12(1):240. PubMed ID: 33853680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of hypoxia preconditioning on mesenchymal stem cells performance in hypertensive kidney disease.
    Sohi GK; Farooqui N; Mohan A; Rajagopalan KS; Xing L; Zhu XY; Jordan K; Krier JD; Saadiq IM; Tang H; Hickson LJ; Eirin A; Lerman LO; Herrmann SM
    Stem Cell Res Ther; 2024 Jun; 15(1):162. PubMed ID: 38853239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Hypoxia Preconditioning on the Regenerative Capacity of Adipose Tissue Derived Mesenchymal Stem Cells in a Model of Renal Artery Stenosis.
    Farooqui N; Mohan A; Isik B; Goksu BB; Thaler R; Zhu XY; Krier JD; Saadiq IM; Ferguson CM; Jordan KL; Tang H; Textor SC; Hickson TJ; van Wijnen AJ; Eirin A; Lerman LO; Herrmann SM
    Stem Cells; 2023 Jan; 41(1):50-63. PubMed ID: 36250949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global epigenetic alterations of mesenchymal stem cells in obesity: the role of vitamin C reprogramming.
    Afarideh M; Thaler R; Khani F; Tang H; Jordan KL; Conley SM; Saadiq IM; Obeidat Y; Pawar AS; Eirin A; Zhu XY; Lerman A; van Wijnen AJ; Lerman LO
    Epigenetics; 2021; 16(7):705-717. PubMed ID: 32893712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obesity and dyslipidemia are associated with partially reversible modifications to DNA hydroxymethylation of apoptosis- and senescence-related genes in swine adipose-derived mesenchymal stem/stromal cells.
    Glasstetter LM; Oderinde TS; Mirchandani M; Rajagopalan KS; Barsom SH; Thaler R; Siddiqi S; Zhu XY; Tang H; Jordan KL; Saadiq IM; van Wijnen AJ; Eirin A; Lerman LO
    Stem Cell Res Ther; 2023 May; 14(1):143. PubMed ID: 37231414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjunctive mesenchymal stem/stromal cells augment microvascular function in poststenotic kidneys treated with low-energy shockwave therapy.
    Chen XJ; Zhang X; Jiang K; Krier JD; Zhu X; Conley S; Lerman A; Lerman LO
    J Cell Physiol; 2020 Dec; 235(12):9806-9818. PubMed ID: 32430932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis.
    Eirin A; Zhu XY; Krier JD; Tang H; Jordan KL; Grande JP; Lerman A; Textor SC; Lerman LO
    Stem Cells; 2012 May; 30(5):1030-41. PubMed ID: 22290832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal stem cells improve medullary inflammation and fibrosis after revascularization of swine atherosclerotic renal artery stenosis.
    Ebrahimi B; Eirin A; Li Z; Zhu XY; Zhang X; Lerman A; Textor SC; Lerman LO
    PLoS One; 2013; 8(7):e67474. PubMed ID: 23844014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Protection Partly Mitigates Kidney Cellular Senescence in Swine Atherosclerotic Renal Artery Stenosis.
    Kim SR; Eirin A; Zhang X; Lerman A; Lerman LO
    Cell Physiol Biochem; 2019; 52(3):617-632. PubMed ID: 30907989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxic preconditioning rejuvenates mesenchymal stem cells and enhances neuroprotection following intracerebral hemorrhage via the miR-326-mediated autophagy.
    Liu J; He J; Ge L; Xiao H; Huang Y; Zeng L; Jiang Z; Lu M; Hu Z
    Stem Cell Res Ther; 2021 Jul; 12(1):413. PubMed ID: 34294127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased cellular senescence in the murine and human stenotic kidney: Effect of mesenchymal stem cells.
    Kim SR; Zou X; Tang H; Puranik AS; Abumoawad AM; Zhu XY; Hickson LJ; Tchkonia T; Textor SC; Kirkland JL; Lerman LO
    J Cell Physiol; 2021 Feb; 236(2):1332-1344. PubMed ID: 32657444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heparanase released from mesenchymal stem cells activates integrin beta1/HIF-2alpha/Flk-1 signaling and promotes endothelial cell migration and angiogenesis.
    Hu X; Zhang L; Jin J; Zhu W; Xu Y; Wu Y; Wang Y; Chen H; Webster KA; Chen H; Yu H; Wang J
    Stem Cells; 2015 Jun; 33(6):1850-1862. PubMed ID: 25754303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential.
    Klinkhammer BM; Kramann R; Mallau M; Makowska A; van Roeyen CR; Rong S; Buecher EB; Boor P; Kovacova K; Zok S; Denecke B; Stuettgen E; Otten S; Floege J; Kunter U
    PLoS One; 2014; 9(3):e92115. PubMed ID: 24667162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning.
    Meng SS; Xu XP; Chang W; Lu ZH; Huang LL; Xu JY; Liu L; Qiu HB; Yang Y; Guo FM
    Stem Cell Res Ther; 2018 Oct; 9(1):280. PubMed ID: 30359325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of obesity on reparative function of human adipose tissue-derived mesenchymal stem cells on ischemic murine kidneys.
    Klomjit N; Conley SM; Zhu XY; Sadiq IM; Libai Y; Krier JD; Ferguson CM; Jordan KL; Tang H; Lerman A; Lerman LO
    Int J Obes (Lond); 2022 Jun; 46(6):1222-1233. PubMed ID: 35256761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells.
    Antebi B; Rodriguez LA; Walker KP; Asher AM; Kamucheka RM; Alvarado L; Mohammadipoor A; Cancio LC
    Stem Cell Res Ther; 2018 Oct; 9(1):265. PubMed ID: 30305185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adipose-derived mesenchymal stem cells from patients with atherosclerotic renovascular disease have increased DNA damage and reduced angiogenesis that can be modified by hypoxia.
    Saad A; Zhu XY; Herrmann S; Hickson L; Tang H; Dietz AB; van Wijnen AJ; Lerman L; Textor S
    Stem Cell Res Ther; 2016 Sep; 7(1):128. PubMed ID: 27612459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia preconditioning increases the ability of healthy but not diabetic rat-derived adipose stromal/stem cells (ASC) to improve histological lesions of streptozotocin-induced diabetic nephropathy.
    Carmona M; Paco-Meza LM; Ortega R; CaƱadillas S; Caballero-Villarraso J; Blanco A; Herrera C
    Pathol Res Pract; 2022 Feb; 230():153756. PubMed ID: 35032832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxic preconditioning potentiates the trophic effects of mesenchymal stem cells on co-cultured human primary hepatocytes.
    Qin HH; Filippi C; Sun S; Lehec S; Dhawan A; Hughes RD
    Stem Cell Res Ther; 2015 Dec; 6():237. PubMed ID: 26626568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal stem cells protect renal tubular cells via TSG-6 regulating macrophage function and phenotype switching.
    Zhao Y; Zhu XY; Song T; Zhang L; Eirin A; Conley S; Tang H; Saadiq I; Jordan K; Lerman A; Lerman LO
    Am J Physiol Renal Physiol; 2021 Mar; 320(3):F454-F463. PubMed ID: 33554782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.