These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33853944)

  • 1. Learning effective physical laws for generating cosmological hydrodynamics with Lagrangian deep learning.
    Dai B; Seljak U
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33853944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emulation of Cosmological Mass Maps with Conditional Generative Adversarial Networks.
    Perraudin N; Marcon S; Lucchi A; Kacprzak T
    Front Artif Intell; 2021; 4():673062. PubMed ID: 34151255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FLAMINGO: calibrating large cosmological hydrodynamical simulations with machine learning.
    Kugel R; Schaye J; Schaller M; Helly JC; Braspenning J; Elbers W; Frenk CS; McCarthy IG; Kwan J; Salcido J; van Daalen MP; Vandenbroucke B; Bahé YM; Borrow J; Chaikin E; Huško F; Jenkins A; Lacey CG; Nobels FSJ; Vernon I
    Mon Not R Astron Soc; 2023 Dec; 526(4):6103-6127. PubMed ID: 37900898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AI-assisted superresolution cosmological simulations.
    Li Y; Ni Y; Croft RAC; Di Matteo T; Bird S; Feng Y
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33947816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lagrangian large eddy simulations via physics-informed machine learning.
    Tian Y; Woodward M; Stepanov M; Fryer C; Hyett C; Livescu D; Chertkov M
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2213638120. PubMed ID: 37585463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.
    Governato F; Brook C; Mayer L; Brooks A; Rhee G; Wadsley J; Jonsson P; Willman B; Stinson G; Quinn T; Madau P
    Nature; 2010 Jan; 463(7278):203-6. PubMed ID: 20075915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Approach to Visualizing Dark Matter Simulations.
    Kaehler R; Hahn O; Abel T
    IEEE Trans Vis Comput Graph; 2012 Dec; 18(12):2078-87. PubMed ID: 26357114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to predict the cosmological structure formation.
    He S; Li Y; Feng Y; Ho S; Ravanbakhsh S; Chen W; Póczos B
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13825-13832. PubMed ID: 31235606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant.
    Cyr-Racine FY; Ge F; Knox L
    Phys Rev Lett; 2022 May; 128(20):201301. PubMed ID: 35657861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lagrangian Cosmological Perturbation Theory at Shell Crossing.
    Saga S; Taruya A; Colombi S
    Phys Rev Lett; 2018 Dec; 121(24):241302. PubMed ID: 30608726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIDM on FIRE: hydrodynamical self-interacting dark matter simulations of low-mass dwarf galaxies.
    Robles VH; Bullock JS; Elbert OD; Fitts A; González-Samaniego A; Boylan-Kolchin M; Hopkins PF; Faucher-Giguère CA; Kereš D; Hayward CC
    Mon Not R Astron Soc; 2017 Dec; 472(3):2945-2954. PubMed ID: 30595610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating Large-Scale-Structure data analyses by emulating Boltzmann solvers and Lagrangian Perturbation Theory.
    Arico' G; Angulo R; Zennaro M
    Open Res Eur; 2021; 1():152. PubMed ID: 37645183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Dark Matter Using Precision Measurements of Stellar Accelerations.
    Ravi A; Langellier N; Phillips DF; Buschmann M; Safdi BR; Walsworth RL
    Phys Rev Lett; 2019 Aug; 123(9):091101. PubMed ID: 31524456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stellar feedback in dwarf galaxy formation.
    Mashchenko S; Wadsley J; Couchman HM
    Science; 2008 Jan; 319(5860):174-7. PubMed ID: 18048653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A forward modeling approach to analyzing galaxy clustering with SimBIG.
    Hahn C; Eickenberg M; Ho S; Hou J; Lemos P; Massara E; Modi C; Moradinezhad Dizgah A; Blancard BR; Abidi MM
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2218810120. PubMed ID: 37819978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Higgs field and the resolution of the Cosmological Constant Paradox in the Weyl-geometrical Universe.
    De Martini F
    Philos Trans A Math Phys Eng Sci; 2017 Nov; 375(2106):. PubMed ID: 28971940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DLA-VPS: Deep-Learning-Assisted Visual Parameter Space Analysis of Cosmological Simulations.
    Sun C; Wang KC
    IEEE Comput Graph Appl; 2022; 42(3):41-52. PubMed ID: 35471878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.