These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33854089)

  • 1. The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro archipelago.
    Raharimalala N; Rombauts S; McCarthy A; Garavito A; Orozco-Arias S; Bellanger L; Morales-Correa AY; Froger S; Michaux S; Berry V; Metairon S; Fournier C; Lepelley M; Mueller L; Couturon E; Hamon P; Rakotomalala JJ; Descombes P; Guyot R; Crouzillat D
    Sci Rep; 2021 Apr; 11(1):8119. PubMed ID: 33854089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta).
    Perrois C; Strickler SR; Mathieu G; Lepelley M; Bedon L; Michaux S; Husson J; Mueller L; Privat I
    Planta; 2015 Jan; 241(1):179-91. PubMed ID: 25249475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted metabolomics and transcript profiling of methyltransferases in three coffee species.
    Montis A; Delporte C; Noda Y; Stoffelen P; Stévigny C; Hermans C; Van Antwerpen P; Souard F
    Plant Sci; 2024 Aug; 345():112117. PubMed ID: 38750798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of a novel intronic microRNA in cross regulation of N-methyltransferase genes involved in caffeine biosynthesis in Coffea canephora.
    Mohanan S; Gowda K; Kandukuri SV; Chandrashekar A
    Gene; 2013 Apr; 519(1):107-12. PubMed ID: 23376454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis.
    Denoeud F; Carretero-Paulet L; Dereeper A; Droc G; Guyot R; Pietrella M; Zheng C; Alberti A; Anthony F; Aprea G; Aury JM; Bento P; Bernard M; Bocs S; Campa C; Cenci A; Combes MC; Crouzillat D; Da Silva C; Daddiego L; De Bellis F; Dussert S; Garsmeur O; Gayraud T; Guignon V; Jahn K; Jamilloux V; Joët T; Labadie K; Lan T; Leclercq J; Lepelley M; Leroy T; Li LT; Librado P; Lopez L; Muñoz A; Noel B; Pallavicini A; Perrotta G; Poncet V; Pot D; Priyono ; Rigoreau M; Rouard M; Rozas J; Tranchant-Dubreuil C; VanBuren R; Zhang Q; Andrade AC; Argout X; Bertrand B; de Kochko A; Graziosi G; Henry RJ; Jayarama ; Ming R; Nagai C; Rounsley S; Sankoff D; Giuliano G; Albert VA; Wincker P; Lashermes P
    Science; 2014 Sep; 345(6201):1181-4. PubMed ID: 25190796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants.
    Uefuji H; Ogita S; Yamaguchi Y; Koizumi N; Sano H
    Plant Physiol; 2003 May; 132(1):372-80. PubMed ID: 12746542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant biochemistry: a naturally decaffeinated arabica coffee.
    Silvarolla MB; Mazzafera P; Fazuoli LC
    Nature; 2004 Jun; 429(6994):826. PubMed ID: 15215853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties.
    Ogita S; Uefuji H; Morimoto M; Sano H
    Plant Mol Biol; 2004 Apr; 54(6):931-41. PubMed ID: 15604660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caffeine synthase and related methyltransferases in plants.
    Misako K; Kouichi M
    Front Biosci; 2004 May; 9():1833-42. PubMed ID: 14977590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of two N-methyltransferases from the caffeine biosynthetic pathway.
    McCarthy AA; McCarthy JG
    Plant Physiol; 2007 Jun; 144(2):879-89. PubMed ID: 17434991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcollinearity in an ethylene receptor coding gene region of the Coffea canephora genome is extensively conserved with Vitis vinifera and other distant dicotyledonous sequenced genomes.
    Guyot R; de la Mare M; Viader V; Hamon P; Coriton O; Bustamante-Porras J; Poncet V; Campa C; Hamon S; de Kochko A
    BMC Plant Biol; 2009 Feb; 9():22. PubMed ID: 19243618
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Zhou MZ; Yan CY; Zeng Z; Luo L; Zeng W; Huang YH
    J Agric Food Chem; 2020 Dec; 68(52):15359-15372. PubMed ID: 33206517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthine to caffeine from coffee (Coffea arabica L.).
    Mizuno K; Okuda A; Kato M; Yoneyama N; Tanaka H; Ashihara H; Fujimura T
    FEBS Lett; 2003 Jan; 534(1-3):75-81. PubMed ID: 12527364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species: GBS coffee phylogeny and the evolution of caffeine content.
    Hamon P; Grover CE; Davis AP; Rakotomalala JJ; Raharimalala NE; Albert VA; Sreenath HL; Stoffelen P; Mitchell SE; Couturon E; Hamon S; de Kochko A; Crouzillat D; Rigoreau M; Sumirat U; Akaffou S; Guyot R
    Mol Phylogenet Evol; 2017 Apr; 109():351-361. PubMed ID: 28212875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine biosynthesis and adenine metabolism in transgenic Coffea canephora plants with reduced expression of N-methyltransferase genes.
    Ashihara H; Zheng XQ; Katahira R; Morimoto M; Ogita S; Sano H
    Phytochemistry; 2006 May; 67(9):882-6. PubMed ID: 16624354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Hydroxypyrazine O-Methyltransferase Genes in Coffea arabica: A Potential Source of Methoxypyrazines That Cause Potato Taste Defect.
    Frato KE
    J Agric Food Chem; 2019 Jan; 67(1):341-351. PubMed ID: 30523690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea).
    Yu Q; Guyot R; de Kochko A; Byers A; Navajas-Pérez R; Langston BJ; Dubreuil-Tranchant C; Paterson AH; Poncet V; Nagai C; Ming R
    Plant J; 2011 Jul; 67(2):305-17. PubMed ID: 21457367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and biochemical characterization of caffeine synthase and purine alkaloid concentration in guarana fruit.
    Schimpl FC; Kiyota E; Mayer JL; Gonçalves JF; da Silva JF; Mazzafera P
    Phytochemistry; 2014 Sep; 105():25-36. PubMed ID: 24856135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain.
    Simkin AJ; Qian T; Caillet V; Michoux F; Ben Amor M; Lin C; Tanksley S; McCarthy J
    J Plant Physiol; 2006 May; 163(7):691-708. PubMed ID: 16442665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress.
    Marraccini P; Freire LP; Alves GS; Vieira NG; Vinecky F; Elbelt S; Ramos HJ; Montagnon C; Vieira LG; Leroy T; Pot D; Silva VA; Rodrigues GC; Andrade AC
    BMC Plant Biol; 2011 May; 11():85. PubMed ID: 21575242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.