These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33854641)

  • 21. A Tunable-Q wavelet transform and quadruple symmetric pattern based EEG signal classification method.
    Aydemir E; Tuncer T; Dogan S
    Med Hypotheses; 2020 Jan; 134():109519. PubMed ID: 31877443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 1D Multi-Point Local Ternary Pattern: A Novel Feature Extraction Method for Analyzing Cognitive Engagement of students in Flipped Learning Pedagogy.
    Shaw R; Mohanty C; Patra BK; Pradhan A
    Cognit Comput; 2022 May; ():1-14. PubMed ID: 35637880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feature extraction of EEG signals based on functional data analysis and its application to recognition of driver fatigue state.
    Shangguan P; Qiu T; Liu T; Zou S; Liu Z; Zhang S
    Physiol Meas; 2021 Jan; 41(12):125004. PubMed ID: 33126235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Driving Fatigue Detection from EEG Using a Modified PCANet Method.
    Ma Y; Chen B; Li R; Wang C; Wang J; She Q; Luo Z; Zhang Y
    Comput Intell Neurosci; 2019; 2019():4721863. PubMed ID: 31396270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep Learning for Detecting Multi-Level Driver Fatigue Using Physiological Signals: A Comprehensive Approach.
    Peivandi M; Ardabili SZ; Sheykhivand S; Danishvar S
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques.
    Amin HU; Malik AS; Ahmad RF; Badruddin N; Kamel N; Hussain M; Chooi WT
    Australas Phys Eng Sci Med; 2015 Mar; 38(1):139-49. PubMed ID: 25649845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classification of EEG Signals Based on Pattern Recognition Approach.
    Amin HU; Mumtaz W; Subhani AR; Saad MNM; Malik AS
    Front Comput Neurosci; 2017; 11():103. PubMed ID: 29209190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recognition of Consumer Preference by Analysis and Classification EEG Signals.
    Aldayel M; Ykhlef M; Al-Nafjan A
    Front Hum Neurosci; 2020; 14():604639. PubMed ID: 33519402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of Different Features and Classifiers for Driver Fatigue Detection Based on a Single EEG Channel.
    Hu J
    Comput Math Methods Med; 2017; 2017():5109530. PubMed ID: 28255330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PrimePatNet87: Prime pattern and tunable q-factor wavelet transform techniques for automated accurate EEG emotion recognition.
    Dogan A; Akay M; Barua PD; Baygin M; Dogan S; Tuncer T; Dogru AH; Acharya UR
    Comput Biol Med; 2021 Nov; 138():104867. PubMed ID: 34543892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EEG-based emotion recognition using dual tree complex wavelet transform and random subspace ensemble classifier.
    Hancer E; Subasi A
    Comput Methods Biomech Biomed Engin; 2023; 26(14):1772-1784. PubMed ID: 36367337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EEG driving fatigue detection based on log-Mel spectrogram and convolutional recurrent neural networks.
    Gao D; Tang X; Wan M; Huang G; Zhang Y
    Front Neurosci; 2023; 17():1136609. PubMed ID: 36968502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time EEG-based detection of fatigue driving danger for accident prediction.
    Wang H; Zhang C; Shi T; Wang F; Ma S
    Int J Neural Syst; 2015 Mar; 25(2):1550002. PubMed ID: 25541095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Driving Fatigue Detection with Three Non-Hair-Bearing EEG Channels and Modified Transformer Model.
    Wang J; Xu Y; Tian J; Li H; Jiao W; Sun Y; Li G
    Entropy (Basel); 2022 Nov; 24(12):. PubMed ID: 36554120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A recurrence network-based convolutional neural network for fatigue driving detection from EEG.
    Gao ZK; Li YL; Yang YX; Ma C
    Chaos; 2019 Nov; 29(11):113126. PubMed ID: 31779352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TMP19: A Novel Ternary Motif Pattern-Based ADHD Detection Model Using EEG Signals.
    Barua PD; Dogan S; Baygin M; Tuncer T; Palmer EE; Ciaccio EJ; Acharya UR
    Diagnostics (Basel); 2022 Oct; 12(10):. PubMed ID: 36292233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EEG-Based Driving Fatigue Detection Using a Two-Level Learning Hierarchy Radial Basis Function.
    Ren Z; Li R; Chen B; Zhang H; Ma Y; Wang C; Lin Y; Zhang Y
    Front Neurorobot; 2021; 15():618408. PubMed ID: 33643018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motor imagery classification method based on relative wavelet packet entropy brain network and improved lasso.
    Wang M; Zhou H; Li X; Chen S; Gao D; Zhang Y
    Front Neurosci; 2023; 17():1113593. PubMed ID: 36816135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of Graph Neural Network in Driving Fatigue Detection Based on EEG Signals.
    Mu Z; Jin L; Yin J; Wang Q
    Comput Intell Neurosci; 2022; 2022():9775784. PubMed ID: 36052050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Revised Tunable Q-Factor Wavelet Transform for EEG-Based Epileptic Seizure Detection.
    Liu Z; Zhu B; Hu M; Deng Z; Zhang J
    IEEE Trans Neural Syst Rehabil Eng; 2023 Mar; PP():. PubMed ID: 37028382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.