These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3385467)

  • 41. Color responses of the human lateral geniculate nucleus: [corrected] selective amplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-field fMRI.
    Mullen KT; Dumoulin SO; Hess RF
    Eur J Neurosci; 2008 Nov; 28(9):1911-23. PubMed ID: 18973604
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Studies of effects of kainic acid lesions in the dorsal lateral geniculate nucleus of rat.
    Woodward WR; Coull BM
    J Comp Neurol; 1982 Oct; 211(1):93-103. PubMed ID: 6184387
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The segregation of ON- and OFF-center responses in the lateral geniculate nucleus of normal and monocularly enucleated ferrets.
    Morgan J; Thompson ID
    Vis Neurosci; 1993; 10(2):303-11. PubMed ID: 8485093
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pattern of lateral geniculate synapses on neuron somata in layer IV of the cat striate cortex.
    Einstein G; Davis TL; Sterling P
    J Comp Neurol; 1987 Jun; 260(1):76-86. PubMed ID: 3036913
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increasing Spontaneous Retinal Activity before Eye Opening Accelerates the Development of Geniculate Receptive Fields.
    Davis ZW; Chapman B; Cheng HJ
    J Neurosci; 2015 Oct; 35(43):14612-23. PubMed ID: 26511250
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modular Representation of Luminance Polarity in the Superficial Layers of Primary Visual Cortex.
    Smith GB; Whitney DE; Fitzpatrick D
    Neuron; 2015 Nov; 88(4):805-18. PubMed ID: 26590348
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The anterior ectosylvian visual area of the ferret: a homologue for an enigmatic visual cortical area of the cat?
    Manger PR; Engler G; Moll CK; Engel AK
    Eur J Neurosci; 2005 Aug; 22(3):706-14. PubMed ID: 16101752
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Innervation patterns of single physiologically identified geniculocortical axons in the striate cortex of the tree shrew.
    Fitzpatrick D; Raczkowski D
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):449-53. PubMed ID: 1688659
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17/18 border region, and to both areas 17 and 18.
    Humphrey AL; Sur M; Uhlrich DJ; Sherman SM
    J Comp Neurol; 1985 Mar; 233(2):190-212. PubMed ID: 3973101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development and organization of ocular dominance bands in primary visual cortex of the sable ferret.
    Ruthazer ES; Baker GE; Stryker MP
    J Comp Neurol; 1999 May; 407(2):151-65. PubMed ID: 10213088
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey.
    Connolly M; Van Essen D
    J Comp Neurol; 1984 Jul; 226(4):544-64. PubMed ID: 6747034
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Receptive field structure varies with layer in the primary visual cortex.
    Martinez LM; Wang Q; Reid RC; Pillai C; Alonso JM; Sommer FT; Hirsch JA
    Nat Neurosci; 2005 Mar; 8(3):372-9. PubMed ID: 15711543
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decoupling eye-specific segregation from lamination in the lateral geniculate nucleus.
    Huberman AD; Stellwagen D; Chapman B
    J Neurosci; 2002 Nov; 22(21):9419-29. PubMed ID: 12417667
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ON/OFF organization in the cat lateral geniculate nucleus: sublaminae vs. columns.
    Bowling DB; Caverhill JI
    J Comp Neurol; 1989 May; 283(1):161-8. PubMed ID: 2732358
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cortical cell orientation selectivity fails to develop in the absence of ON-center retinal ganglion cell activity.
    Chapman B; Gödecke I
    J Neurosci; 2000 Mar; 20(5):1922-30. PubMed ID: 10684893
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visual response properties of cortical inputs to an extrastriate cortical area in the cat.
    Sherk H
    Vis Neurosci; 1989 Sep; 3(3):249-65. PubMed ID: 2518633
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activity-dependent disruption of intersublaminar spaces and ABAKAN expression does not impact functional on and off organization in the ferret retinogeniculate system.
    Speer CM; Sun C; Chapman B
    Neural Dev; 2011 Mar; 6():7. PubMed ID: 21401945
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Involvement of subplate neurons in the formation of ocular dominance columns.
    Ghosh A; Shatz CJ
    Science; 1992 Mar; 255(5050):1441-3. PubMed ID: 1542795
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex.
    Stryker MP; Harris WA
    J Neurosci; 1986 Aug; 6(8):2117-33. PubMed ID: 3746403
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatial modulation of dark versus bright stimulus responses in the mouse visual system.
    Williams B; Del Rosario J; Muzzu T; Peelman K; Coletta S; Bichler EK; Speed A; Meyer-Baese L; Saleem AB; Haider B
    Curr Biol; 2021 Sep; 31(18):4172-4179.e6. PubMed ID: 34314675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.