These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
556 related articles for article (PubMed ID: 3385474)
1. Effects of temporomandibular joint stimulation on nociceptive and nonnociceptive neurons of the cat's trigeminal subnucleus caudalis (medullary dorsal horn). Broton JG; Hu JW; Sessle BJ J Neurophysiol; 1988 May; 59(5):1575-89. PubMed ID: 3385474 [TBL] [Abstract][Full Text] [Related]
2. Responses of neurons in feline trigeminal subnucleus caudalis (medullary dorsal horn) to cutaneous, intraoral, and muscle afferent stimuli. Amano N; Hu JW; Sessle BJ J Neurophysiol; 1986 Feb; 55(2):227-43. PubMed ID: 3950689 [TBL] [Abstract][Full Text] [Related]
3. Convergence of cutaneous, tooth pulp, visceral, neck and muscle afferents onto nociceptive and non-nociceptive neurones in trigeminal subnucleus caudalis (medullary dorsal horn) and its implications for referred pain. Sessle BJ; Hu JW; Amano N; Zhong G Pain; 1986 Nov; 27(2):219-235. PubMed ID: 3797017 [TBL] [Abstract][Full Text] [Related]
4. Response properties of nociceptive and non-nociceptive neurons in the rat's trigeminal subnucleus caudalis (medullary dorsal horn) related to cutaneous and deep craniofacial afferent stimulation and modulation by diffuse noxious inhibitory controls. Hu JW Pain; 1990 Jun; 41(3):331-345. PubMed ID: 2388770 [TBL] [Abstract][Full Text] [Related]
5. Comparison of responses of cutaneous nociceptive and nonnociceptive brain stem neurons in trigeminal subnucleus caudalis (medullary dorsal horn) and subnucleus oralis to natural and electrical stimulation of tooth pulp. Hu JW; Sessle BJ J Neurophysiol; 1984 Jul; 52(1):39-53. PubMed ID: 6747677 [TBL] [Abstract][Full Text] [Related]
6. Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray. Hayashi H; Sumino R; Sessle BJ J Neurophysiol; 1984 May; 51(5):890-905. PubMed ID: 6726316 [TBL] [Abstract][Full Text] [Related]
7. Encoding of corneal input in two distinct regions of the spinal trigeminal nucleus in the rat: cutaneous receptive field properties, responses to thermal and chemical stimulation, modulation by diffuse noxious inhibitory controls, and projections to the parabrachial area. Meng ID; Hu JW; Benetti AP; Bereiter DA J Neurophysiol; 1997 Jan; 77(1):43-56. PubMed ID: 9120584 [TBL] [Abstract][Full Text] [Related]
8. Effects of tooth pulp deafferentation on nociceptive and nonnociceptive neurons of the feline trigeminal subnucleus caudalis (medullary dorsal horn). Hu JW; Sessle BJ J Neurophysiol; 1989 Jun; 61(6):1197-206. PubMed ID: 2746320 [TBL] [Abstract][Full Text] [Related]
10. Properties of nociceptive and non-nociceptive neurons in trigeminal subnucleus oralis of the rat. Dallel R; Raboisson P; Woda A; Sessle BJ Brain Res; 1990 Jun; 521(1-2):95-106. PubMed ID: 2207681 [TBL] [Abstract][Full Text] [Related]
11. Parabrachial area and nucleus raphe magnus-induced modulation of nociceptive and nonnociceptive trigeminal subnucleus caudalis neurons activated by cutaneous or deep inputs. Chiang CY; Hu JW; Sessle BJ J Neurophysiol; 1994 Jun; 71(6):2430-45. PubMed ID: 7931526 [TBL] [Abstract][Full Text] [Related]
12. Response properties of TMJ units in superficial laminae at the spinomedullary junction of female rats vary over the estrous cycle. Okamoto K; Hirata H; Takeshita S; Bereiter DA J Neurophysiol; 2003 Mar; 89(3):1467-77. PubMed ID: 12626622 [TBL] [Abstract][Full Text] [Related]
13. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons. Dostrovsky JO; Shah Y; Gray BG J Neurophysiol; 1983 Apr; 49(4):948-60. PubMed ID: 6854363 [TBL] [Abstract][Full Text] [Related]
14. Glutamate and capsaicin effects on trigeminal nociception II: activation and central sensitization in brainstem neurons with deep craniofacial afferent input. Lam DK; Sessle BJ; Hu JW Brain Res; 2009 Feb; 1253():48-59. PubMed ID: 19084510 [TBL] [Abstract][Full Text] [Related]
15. Intensity coding by TMJ-responsive neurons in superficial laminae of caudal medullary dorsal horn of the rat. Takeshita S; Hirata H; Bereiter DA J Neurophysiol; 2001 Nov; 86(5):2393-404. PubMed ID: 11698529 [TBL] [Abstract][Full Text] [Related]
16. Properties of functionally identified nociceptive and nonnociceptive facial primary afferents and presynaptic excitability changes induced in their brain stem endings by raphe and orofacial stimuli in cats. Hu JW; Sessle BJ Exp Neurol; 1988 Sep; 101(3):385-99. PubMed ID: 3416981 [TBL] [Abstract][Full Text] [Related]
17. Responses of cat C1 spinal cord dorsal and ventral horn neurons to noxious and non-noxious stimulation of the head and face. Chudler EH; Foote WE; Poletti CE Brain Res; 1991 Aug; 555(2):181-92. PubMed ID: 1933332 [TBL] [Abstract][Full Text] [Related]
18. Surgical incision can alter capsaicin-induced central sensitization in rat brainstem nociceptive neurons. Lam DK; Sessle BJ; Hu JW Neuroscience; 2008 Oct; 156(3):737-47. PubMed ID: 18755248 [TBL] [Abstract][Full Text] [Related]
19. Neuroplasticity induced by tooth pulp stimulation in trigeminal subnucleus oralis involves NMDA receptor mechanisms. Park SJ; Chiang CY; Hu JW; Sessle BJ J Neurophysiol; 2001 May; 85(5):1836-46. PubMed ID: 11353000 [TBL] [Abstract][Full Text] [Related]
20. Effects of cardiac vagal afferent electrostimulation on the responses of trigeminal and trigeminothalamic neurons to noxious orofacial stimulation. Bossut DF; Maixner W Pain; 1996 Apr; 65(1):101-109. PubMed ID: 8826496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]