These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33854895)

  • 1. Direct Growth of Highly Conductive Large-Area Stretchable Graphene.
    Han Y; Park BJ; Eom JH; Jella V; Ippili S; Pammi SVN; Choi JS; Ha H; Choi H; Jeon C; Park K; Jung HT; Yoo S; Kim HY; Kim YH; Yoon SG
    Adv Sci (Weinh); 2021 Apr; 8(7):2003697. PubMed ID: 33854895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-dot doped, transfer-free, low-temperature, high mobility graphene using microwave plasma CVD.
    Mewada A; Vishwakarma R; Zhu R; Umeno M
    RSC Adv; 2022 Jul; 12(32):20610-20617. PubMed ID: 35919180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defect-Free Graphene Synthesized Directly at 150 °C via Chemical Vapor Deposition with No Transfer.
    Park BJ; Choi JS; Eom JH; Ha H; Kim HY; Lee S; Shin H; Yoon SG
    ACS Nano; 2018 Feb; 12(2):2008-2016. PubMed ID: 29390178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures.
    Arezki H; Boutchich M; Alamarguy D; Madouri A; Alvarez J; Cabarrocas PR; Kleider JP; Yao F; Hee Lee Y
    J Phys Condens Matter; 2016 Oct; 28(40):404001. PubMed ID: 27506254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H
    Xie H; Cui K; Cui L; Liu B; Yu Y; Tan C; Zhang Y; Zhang Y; Liu Z
    Small; 2020 Jan; 16(4):e1905485. PubMed ID: 31894647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Stable and Effective Doping of Graphene by Selective Atomic Layer Deposition of Ruthenium.
    Kim M; Kim KJ; Lee SJ; Kim HM; Cho SY; Kim MS; Kim SH; Kim KB
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):701-709. PubMed ID: 27936584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity.
    An BW; Hyun BG; Kim SY; Kim M; Lee MS; Lee K; Koo JB; Chu HY; Bae BS; Park JU
    Nano Lett; 2014 Nov; 14(11):6322-8. PubMed ID: 25299634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale Stretchable Semiembedded Copper Nanowire Transparent Conductive Films by an Electrospinning Template.
    Yang X; Hu X; Wang Q; Xiong J; Yang H; Meng X; Tan L; Chen L; Chen Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26468-26475. PubMed ID: 28731322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes.
    Ding J; Fu S; Zhang R; Boon E; Lee W; Fisher FT; Yang EH
    Nanotechnology; 2017 Nov; 28(46):465302. PubMed ID: 29064823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic chlorine trap-doping for transparent, conductive, thermally stable and damage-free graphene.
    Pham VP; Kim KN; Jeon MH; Kim KS; Yeom GY
    Nanoscale; 2014 Dec; 6(24):15301-8. PubMed ID: 25385489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Synthesis of Large-Area Graphene on Insulating Substrates at Low Temperature using Microwave Plasma CVD.
    Vishwakarma R; Zhu R; Abuelwafa AA; Mabuchi Y; Adhikari S; Ichimura S; Soga T; Umeno M
    ACS Omega; 2019 Jun; 4(6):11263-11270. PubMed ID: 31460228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors.
    Yoon SS; Lee KE; Cha HJ; Seong DG; Um MK; Byun JH; Oh Y; Oh JH; Lee W; Lee JU
    Sci Rep; 2015 Nov; 5():16366. PubMed ID: 26549711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast Growth of Uniform Multi-Layer Graphene Films Directly on Silicon Dioxide Substrates.
    Zhou L; Wei S; Ge C; Zhao C; Guo B; Zhang J; Zhao J
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31266221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Healing Graphene Defects Using Selective Electrochemical Deposition: Toward Flexible and Stretchable Devices.
    Yoon T; Kim JH; Choi JH; Jung DY; Park IJ; Choi SY; Cho NS; Lee JI; Kwon YD; Cho S; Kim TS
    ACS Nano; 2016 Jan; 10(1):1539-45. PubMed ID: 26715053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roll-to-Roll Dry Transfer of Large-Scale Graphene.
    Hong N; Kireev D; Zhao Q; Chen D; Akinwande D; Li W
    Adv Mater; 2022 Jan; 34(3):e2106615. PubMed ID: 34751484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface Electrical Properties of Al
    Fisichella G; Schilirò E; Di Franco S; Fiorenza P; Lo Nigro R; Roccaforte F; Ravesi S; Giannazzo F
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7761-7771. PubMed ID: 28135063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s.
    Smith C; Qaisi R; Liu Z; Yu Q; Hussain MM
    ACS Nano; 2013 Jul; 7(7):5818-23. PubMed ID: 23777434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Growth of Graphene on Polyimide for High-Responsivity Flexible PbS-Graphene Photodetectors.
    Hu L; Deng J; Xie Y; Qian F; Dong Y; Xu C
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer of CVD-grown monolayer graphene onto arbitrary substrates.
    Suk JW; Kitt A; Magnuson CW; Hao Y; Ahmed S; An J; Swan AK; Goldberg BB; Ruoff RS
    ACS Nano; 2011 Sep; 5(9):6916-24. PubMed ID: 21894965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-based flexible and stretchable thin film transistors.
    Yan C; Cho JH; Ahn JH
    Nanoscale; 2012 Aug; 4(16):4870-82. PubMed ID: 22767356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.