BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 33855366)

  • 1. Elucidating transcriptomic profiles from single-cell RNA sequencing data using nature-inspired compressed sensing.
    Yu Z; Bian C; Liu G; Zhang S; Wong KC; Li X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33855366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolving Transcriptomic Profiles From Single-Cell RNA-Seq Data Using Nature-Inspired Multiobjective Optimization.
    Li X; Zhang S; Wong KC
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2445-2458. PubMed ID: 32031947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep embedded clustering with multiple objectives on scRNA-seq data.
    Li X; Zhang S; Wong KC
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WEDGE: imputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition.
    Hu Y; Li B; Zhang W; Liu N; Cai P; Chen F; Qu K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement.
    Guo Q; Yuan M; Zhang L; Deng M
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.
    Chen S; Hua K; Cui H; Jiang R
    BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. noisyR: enhancing biological signal in sequencing datasets by characterizing random technical noise.
    Moutsopoulos I; Maischak L; Lauzikaite E; Vasquez Urbina SA; Williams EC; Drost HG; Mohorianu II
    Nucleic Acids Res; 2021 Aug; 49(14):e83. PubMed ID: 34076236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scedar: A scalable Python package for single-cell RNA-seq exploratory data analysis.
    Zhang Y; Kim MS; Reichenberger ER; Stear B; Taylor DM
    PLoS Comput Biol; 2020 Apr; 16(4):e1007794. PubMed ID: 32339163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data.
    Stock M; Popp N; Fiorentino J; Scialdone A
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38627250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Analysis of Single-Cell RNA-Seq Data.
    Alessandrì L; Cordero F; Beccuti M; Arigoni M; Calogero RA
    Methods Mol Biol; 2021; 2284():289-301. PubMed ID: 33835449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PseudoGA: cell pseudotime reconstruction based on genetic algorithm.
    Mondal PK; Saha US; Mukhopadhyay I
    Nucleic Acids Res; 2021 Aug; 49(14):7909-7924. PubMed ID: 34244782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unlocking immune-mediated disease mechanisms with transcriptomics.
    de Jong E; Bosco A
    Biochem Soc Trans; 2021 Apr; 49(2):705-714. PubMed ID: 33843974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature-Inspired Compressed Sensing for Transcriptomic Profiling From Random Composite Measurements.
    Zhang S; Li X; Lin Q; Wong KC
    IEEE Trans Cybern; 2021 Sep; 51(9):4476-4487. PubMed ID: 31751263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical downstream analysis steps for single-cell RNA sequencing data.
    Zhang Z; Cui F; Lin C; Zhao L; Wang C; Zou Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCMarker: Ab initio marker selection for single cell transcriptome profiling.
    Wang F; Liang S; Kumar T; Navin N; Chen K
    PLoS Comput Biol; 2019 Oct; 15(10):e1007445. PubMed ID: 31658262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning of gene relationships from single cell time-course expression data.
    Yuan Y; Bar-Joseph Z
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering the key dimensions of high-throughput biomolecular data using deep learning.
    Zhang S; Li X; Lin Q; Lin J; Wong KC
    Nucleic Acids Res; 2020 Jun; 48(10):e56. PubMed ID: 32232416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Cell Transcriptome Analysis of T Cells.
    Van Der Byl W; Rizzetto S; Samir J; Cai C; Eltahla AA; Luciani F
    Methods Mol Biol; 2019; 2048():155-205. PubMed ID: 31396939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.