These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33855808)

  • 21. Ruthenium-Catalyzed Aerobic Oxidation of Amines.
    Ray R; Hazari AS; Lahiri GK; Maiti D
    Chem Asian J; 2018 Sep; 13(17):2138-2148. PubMed ID: 29345861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Development of the Direct Transformations of Aromatic C-H Bonds Using a Heterogeneous Metal Catalyst].
    Matsumoto K
    Yakugaku Zasshi; 2018; 138(11):1353-1361. PubMed ID: 30381643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal-Organic Frameworks with Organogold(III) Complexes for Photocatalytic Amine Oxidation with Enhanced Efficiency and Selectivity.
    Han Q; Wang YL; Sun M; Sun CY; Zhu SS; Wang XL; Su ZM
    Chemistry; 2018 Oct; 24(56):15089-15095. PubMed ID: 30051935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ligand-Controlled Product Selectivity in Electrochemical Carbon Dioxide Reduction Using Manganese Bipyridine Catalysts.
    Rønne MH; Cho D; Madsen MR; Jakobsen JB; Eom S; Escoudé É; Hammershøj HCD; Nielsen DU; Pedersen SU; Baik MH; Skrydstrup T; Daasbjerg K
    J Am Chem Soc; 2020 Mar; 142(9):4265-4275. PubMed ID: 32022558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic removal of toluene over manganese oxide-based catalysts: a review.
    Lyu Y; Li C; Du X; Zhu Y; Zhang Y; Li S
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):2482-2501. PubMed ID: 31848947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scalable Synthesis of Efficient Water Oxidation Catalysts: Insights into the Activity of Flame-Made Manganese Oxide Nanocrystals.
    Liu G; Hall J; Nasiri N; Gengenbach T; Spiccia L; Cheah MH; Tricoli A
    ChemSusChem; 2015 Dec; 8(24):4162-71. PubMed ID: 26601653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of Mn-Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons.
    Gutiérrez-Ortiz JI; de Rivas B; López-Fonseca R; Martín S; González-Velasco JR
    Chemosphere; 2007 Jun; 68(6):1004-12. PubMed ID: 17395240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solventless oxidative coupling of amines to imines by using transition-metal-free metal-organic frameworks.
    Qiu X; Len C; Luque R; Li Y
    ChemSusChem; 2014 Jun; 7(6):1684-8. PubMed ID: 24801486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond.
    Sun W; Sun Q
    Acc Chem Res; 2019 Aug; 52(8):2370-2381. PubMed ID: 31333021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tris(2-Aminoethyl)Amine/Metal Oxides Hybrid Materials-Preparation, Characterization and Catalytic Application.
    Stawicka K; Ziolek M
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33066391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.
    Yu J; Shi F; Gong LZ
    Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system.
    Samec JS; Ell AH; Bäckvall JE
    Chemistry; 2005 Apr; 11(8):2327-34. PubMed ID: 15706621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative study of metal oxide and sulfate catalysts for selective catalytic reduction of NO with NH
    Zhu L; Zhong Z; Yang H; Wang C
    Environ Technol; 2017 May; 38(10):1285-1294. PubMed ID: 27611824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isoelectronic Manganese and Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Divergences.
    Gorgas N; Kirchner K
    Acc Chem Res; 2018 Jun; 51(6):1558-1569. PubMed ID: 29863334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides for Environmental Applications: A Critical Review.
    Xu H; Yan N; Qu Z; Liu W; Mei J; Huang W; Zhao S
    Environ Sci Technol; 2017 Aug; 51(16):8879-8892. PubMed ID: 28662330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of the Mn oxidation state and lattice oxygen in Mn-based TiO2 catalysts on the low-temperature selective catalytic reduction of NO by NH3.
    Lee SM; Park KH; Kim SS; Kwon DW; Hong SC
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1085-92. PubMed ID: 23019822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissection of the mechanism of manganese porphyrin-catalyzed chlorine dioxide generation.
    Umile TP; Wang D; Groves JT
    Inorg Chem; 2011 Oct; 50(20):10353-62. PubMed ID: 21936530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Progress of Thermocatalytic and Photo/Thermocatalytic Oxidation for VOCs Purification over Manganese-based Oxide Catalysts.
    Wu P; Jin X; Qiu Y; Ye D
    Environ Sci Technol; 2021 Apr; 55(8):4268-4286. PubMed ID: 33720707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decomposition of 1,2-dichloroethane over CeO2 modified USY zeolite catalysts: effect of acidity and redox property on the catalytic behavior.
    Huang Q; Xue X; Zhou R
    J Hazard Mater; 2010 Nov; 183(1-3):694-700. PubMed ID: 20709452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomimetic Water-Oxidation Catalysts: Manganese Oxides.
    Kurz P
    Top Curr Chem; 2016; 371():49-72. PubMed ID: 25980320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.