These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33855808)

  • 41. Design strategies for P-containing fuels adaptable CeO2-MoO3 catalysts for DeNO(x): significance of phosphorus resistance and N2 selectivity.
    Chang H; Jong MT; Wang C; Qu R; Du Y; Li J; Hao J
    Environ Sci Technol; 2013 Oct; 47(20):11692-9. PubMed ID: 24024774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy.
    Zheng A; Li S; Liu SB; Deng F
    Acc Chem Res; 2016 Apr; 49(4):655-63. PubMed ID: 26990961
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis.
    Afewerki S; Córdova A
    Chem Rev; 2016 Nov; 116(22):13512-13570. PubMed ID: 27723291
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synergistic effects of Cu species and acidity of Cu-ZSM-5 on catalytic performance for selective catalytic oxidation of n-butylamine.
    Xing X; Li N; Cheng J; Sun Y; Zhang Z; Zhang X; Hao Z
    J Environ Sci (China); 2020 Oct; 96():55-63. PubMed ID: 32819699
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Facile synthesis of Ag-modified manganese oxide for effective catalytic ozone decomposition.
    Li X; Ma J; Zhang C; Zhang R; He H
    J Environ Sci (China); 2019 Jun; 80():159-168. PubMed ID: 30952334
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-Temperature Selective Catalytic Reduction (SCR) of NO with NH
    Smirniotis PG; Peña DA; Uphade BS
    Angew Chem Int Ed Engl; 2001 Jul; 40(13):2479-2482. PubMed ID: 29712281
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran or 2-Formyl-5-furancarboxylic Acid in Water by using MgO⋅CeO
    Ventura M; Lobefaro F; de Giglio E; Distaso M; Nocito F; Dibenedetto A
    ChemSusChem; 2018 Apr; 11(8):1305-1315. PubMed ID: 29513920
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amorphous manganese oxide as highly active catalyst for soot oxidation.
    Gao Y; Wang Z; Cui C; Wang B; Liu W; Liu W; Wang L
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):13488-13500. PubMed ID: 32026364
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.
    McCann SD; Stahl SS
    Acc Chem Res; 2015 Jun; 48(6):1756-66. PubMed ID: 26020118
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inverse gas chromatography as a technique for the characterization of the performance of Mn/Zr mixed oxides as combustion catalysts.
    Cuervo MR; Díaz E; de Rivas B; López-Fonseca R; Ordóñez S; Gutiérrez-Ortiz JI
    J Chromatogr A; 2009 Nov; 1216(45):7873-81. PubMed ID: 19747684
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts.
    Pelletier JD; Basset JM
    Acc Chem Res; 2016 Apr; 49(4):664-77. PubMed ID: 26959689
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Significant role of Mn(III) sites in e(g)(1) configuration in manganese oxide catalysts for efficient artificial water oxidation.
    Indra A; Menezes PW; Schuster F; Driess M
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):156-61. PubMed ID: 25542875
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers.
    Schoenbaum CA; Schwartz DK; Medlin JW
    Acc Chem Res; 2014 Apr; 47(4):1438-45. PubMed ID: 24635215
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthetic applications of nonmetal catalysts for homogeneous oxidations.
    Adam W; Saha-Möller CR; Ganeshpure PA
    Chem Rev; 2001 Nov; 101(11):3499-548. PubMed ID: 11840992
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction.
    Chen J; Gong X; Li J; Li Y; Ma J; Hou C; Zhao G; Yuan W; Zhao B
    Science; 2018 Jun; 360(6396):1438-1442. PubMed ID: 29954974
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Porous metal-organic frameworks for heterogeneous biomimetic catalysis.
    Zhao M; Ou S; Wu CD
    Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Porous Organic Polymers with Built-in N-Heterocyclic Carbenes: Selective and Efficient Heterogeneous Catalyst for the Reductive N-Formylation of Amines with CO
    Lv H; Wang W; Li F
    Chemistry; 2018 Nov; 24(62):16588-16594. PubMed ID: 30136747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simple Copper Catalysts for the Aerobic Oxidation of Amines: Selectivity Control by the Counterion.
    Xu B; Hartigan EM; Feula G; Huang Z; Lumb JP; Arndtsen BA
    Angew Chem Int Ed Engl; 2016 Dec; 55(51):15802-15806. PubMed ID: 27873434
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects.
    McInnis JP; Delferro M; Marks TJ
    Acc Chem Res; 2014 Aug; 47(8):2545-57. PubMed ID: 25075755
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Zwitterionic Covalent Organic Frameworks as Catalysts for Hierarchical Reduction of CO
    Mu ZJ; Ding X; Chen ZY; Han BH
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41350-41358. PubMed ID: 30398046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.