BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33856056)

  • 1. Proteomic analysis of metabolic mechanisms associated with fatty acid biosynthesis during Styrax tonkinensis kernel development.
    Wu Q; Chen C; Wang X; Zhang Z; Yu F; Guy RD
    J Sci Food Agric; 2021 Nov; 101(14):6053-6063. PubMed ID: 33856056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis of metabolic pathways associated with oil accumulation in developing seed kernels of Styrax tonkinensis, a woody biodiesel species.
    Wu Q; Cao Y; Chen C; Gao Z; Yu F; Guy RD
    BMC Plant Biol; 2020 Mar; 20(1):121. PubMed ID: 32183691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic and Metabolomic Analysis Unravels the Molecular Regulatory Mechanism of Fatty Acid Biosynthesis in
    Chen C; Chen H; Han C; Liu Z; Ni M; Wu Q; Yu F
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 24-Epibrassinolide Promotes Fatty Acid Accumulation and the Expression of Related Genes in
    Chen C; Chen H; Han C; Liu Z; Yu F; Wu Q
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012162
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of Fruit Shading on Gene and Protein Expression During Starch and Oil Accumulation in Developing
    Wu Q; Chen H; Zhang Z; Chen C; Yu F; Guy RD
    Front Plant Sci; 2022; 13():905633. PubMed ID: 35720550
    [No Abstract]   [Full Text] [Related]  

  • 6. The nutrient distribution in the continuum of the pericarp, seed coat, and kernel during
    Wu Q; Zhang Z; Peng H; Wu Y; Yu F
    PeerJ; 2019; 7():e7996. PubMed ID: 31687284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids.
    Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T
    BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.
    Liu H; Wang C; Komatsu S; He M; Liu G; Shen S
    J Proteomics; 2013 Oct; 91():23-40. PubMed ID: 23835435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic transcriptome analysis identifies genes related to fatty acid biosynthesis in the seeds of Prunus pedunculata Pall.
    Bao W; Ao D; Wang L; Ling Z; Chen M; Bai Y; Wuyun TN; Chen J; Zhang S; Li F
    BMC Plant Biol; 2021 Mar; 21(1):152. PubMed ID: 33761884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the Candidate Proteins Related to Oleic Acid Accumulation during Peanut (
    Liu H; Li H; Gu J; Deng L; Ren L; Hong Y; Lu Q; Chen X; Liang X
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29670063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Combined Analysis of Transcriptome and Antioxidant Enzymes Revealed the Mechanism of EBL and ZnO NPs Enhancing
    Liu ZM; Faizan M; Chen C; Zheng LH; Yu FY
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36421844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata).
    Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y
    BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated analysis of transcriptomic and proteomic data from tree peony (
    Wang X; Liang H; Guo D; Guo L; Duan X; Jia Q; Hou X
    Hortic Res; 2019; 6():111. PubMed ID: 31645965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Proteome Profiling Provides Insight into the Proteins Associated with β-Glucan Accumulation in Hull-less Barley Grains.
    Zhang G; Zhang G; Zeng X; Xu Q; Wang Y; Yuan H; Zhang Y; Nyima T
    J Agric Food Chem; 2021 Jan; 69(1):568-583. PubMed ID: 33371680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolite Profiling and Classification of Developing
    Wu Q; Zhao X; Chen C; Zhang Z; Yu F
    Metabolites; 2020 Jan; 10(1):. PubMed ID: 31906354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic analysis of α-linolenic acid content and biosynthesis in Paeonia ostii fruits and seeds.
    Yu SY; Zhang X; Huang LB; Lyu YP; Zhang Y; Yao ZJ; Zhang XX; Yuan JH; Hu YH
    BMC Genomics; 2021 Apr; 22(1):297. PubMed ID: 33892636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and roles of proteins for seed development in mungbean (Vigna radiata L.) seed proteomes.
    Kazłowski B; Chen MR; Chao PM; Lai CC; Ko YT
    J Agric Food Chem; 2013 Jul; 61(27):6650-9. PubMed ID: 23758297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Analysis of Seed microRNA and mRNA Transcriptome Reveals Important Functional Genes and microRNA-Targets in the Process of Walnut (
    Zhao X; Yang G; Liu X; Yu Z; Peng S
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp.
    Kilaru A; Cao X; Dabbs PB; Sung HJ; Rahman MM; Thrower N; Zynda G; Podicheti R; Ibarra-Laclette E; Herrera-Estrella L; Mockaitis K; Ohlrogge JB
    BMC Plant Biol; 2015 Aug; 15():203. PubMed ID: 26276496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oil Biosynthesis in Underground Oil-Rich Storage Vegetative Tissue: Comparison of Cyperus esculentus Tuber with Oil Seeds and Fruits.
    Yang Z; Ji H; Liu D
    Plant Cell Physiol; 2016 Dec; 57(12):2519-2540. PubMed ID: 27742886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.