These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33856072)

  • 1. Spreadsheet analysis of the field-driven start-up flow in a microfluidic channel.
    Mondal PK; Roy M
    Electrophoresis; 2021 Dec; 42(23):2465-2473. PubMed ID: 33856072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging spreadsheet analysis tool for electrically actuated start-up flow of non-Newtonian fluid in small-scale systems.
    Roy M; Chakraborty P; Mondal PK; Wongwises S
    Sci Rep; 2022 Nov; 12(1):20059. PubMed ID: 36414649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical Solution of the Time-Dependent Microfluidic Poiseuille Flow in Rectangular Channel Cross-Sections and its Numerical Implementation in Microsoft Excel.
    Risch P; Helmer D; Kotz F; Rapp BE
    Biosensors (Basel); 2019 May; 9(2):. PubMed ID: 31137723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.
    Zhao C; Yang C
    Electrophoresis; 2013 Mar; 34(5):662-7. PubMed ID: 23229874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slip-driven electroosmotic transport through porous media.
    Gaikwad H; Mondal PK
    Electrophoresis; 2017 Mar; 38(5):596-606. PubMed ID: 27921289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows.
    Park HM; Lee WM
    J Colloid Interface Sci; 2008 Jan; 317(2):631-6. PubMed ID: 17935728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of electroosmotic flow of power-law fluids in a slit microchannel.
    Zhao C; Zholkovskij E; Masliyah JH; Yang C
    J Colloid Interface Sci; 2008 Oct; 326(2):503-10. PubMed ID: 18656891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmotic flow: From microfluidics to nanofluidics.
    Alizadeh A; Hsu WL; Wang M; Daiguji H
    Electrophoresis; 2021 Apr; 42(7-8):834-868. PubMed ID: 33382088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressure-driven microfluidic devices.
    Chakraborty J; Ray S; Chakraborty S
    Electrophoresis; 2012 Feb; 33(3):419-25. PubMed ID: 22212910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentration-Polarization Electroosmosis near Insulating Constrictions within Microfluidic Channels.
    Fernández-Mateo R; Calero V; Morgan H; Ramos A; García-Sánchez P
    Anal Chem; 2021 Nov; 93(44):14667-14674. PubMed ID: 34704741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A velocity program using the Kanade-Lucas-Tomasi feature-tracking algorithm with demonstration for pressure and electroosmosis conditions.
    Devasagayam J; Bosma R; Collier CM
    Electrophoresis; 2022 Apr; 43(7-8):865-878. PubMed ID: 35049075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of magnetic field on electroosmotic flow of viscoelastic fluids in a microchannel.
    Wang X; Qiao Y; Qi H; Xu H
    Electrophoresis; 2021 Nov; 42(21-22):2347-2355. PubMed ID: 33811361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotating electroosmotic flow of power-law fluid through polyelectrolyte grafted microchannel.
    Patel M; Harish Kruthiventi SS; Kaushik P
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111058. PubMed ID: 32408258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye⁻Huckel Limit.
    Liu W; Wu Q; Ren Y; Cui P; Yao B; Li Y; Hui M; Jiang T; Bai L
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroosmotic shear flow in microchannels.
    Mampallil D; van den Ende D
    J Colloid Interface Sci; 2013 Jan; 390(1):234-41. PubMed ID: 23089595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution.
    Chang CC; Kuo CY; Wang CY
    Electrophoresis; 2011 Nov; 32(23):3341-7. PubMed ID: 22072500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model based design of a microfluidic mixer driven by induced charge electroosmosis.
    Harnett CK; Templeton J; Dunphy-Guzman KA; Senousy YM; Kanouff MP
    Lab Chip; 2008 Apr; 8(4):565-72. PubMed ID: 18369511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review: Electric field driven pumping in microfluidic device.
    Hossan MR; Dutta D; Islam N; Dutta P
    Electrophoresis; 2018 Mar; 39(5-6):702-731. PubMed ID: 29130508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic overview of electrode configuration in electric-driven micropumps.
    Tavari T; Nazari M; Meamardoost S; Tamayol A; Samandari M
    Electrophoresis; 2022 Jul; 43(13-14):1476-1520. PubMed ID: 35452525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.