These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33856108)

  • 21. Surface-Embedded Stretchable Electrodes by Direct Printing and their Uses to Fabricate Ultrathin Vibration Sensors and Circuits for 3D Structures.
    Song JH; Kim YT; Cho S; Song WJ; Moon S; Park CG; Park S; Myoung JM; Jeong U
    Adv Mater; 2017 Nov; 29(43):. PubMed ID: 28977713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermoplastic Elastomer Systems Containing Carbon Nanofibers as Soft Piezoresistive Sensors.
    Turgut A; Tuhin MO; Toprakci O; Pasquinelli MA; Spontak RJ; Toprakci HAK
    ACS Omega; 2018 Oct; 3(10):12648-12657. PubMed ID: 31457994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microstructured silicone substrate for printable and stretchable metallic films.
    Robinson AP; Minev I; Graz IM; Lacour SP
    Langmuir; 2011 Apr; 27(8):4279-84. PubMed ID: 21410202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Low-Cost Strain Gauge Displacement Sensor Fabricated via Shadow Mask Printing.
    Yi Y; Wang B; Bermak A
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Printable elastic conductors with a high conductivity for electronic textile applications.
    Matsuhisa N; Kaltenbrunner M; Yokota T; Jinno H; Kuribara K; Sekitani T; Someya T
    Nat Commun; 2015 Jun; 6():7461. PubMed ID: 26109453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks.
    Song H; Zhang J; Chen D; Wang K; Niu S; Han Z; Ren L
    Nanoscale; 2017 Jan; 9(3):1166-1173. PubMed ID: 28009874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D-Printable Carbon Nanotubes-Based Composite for Flexible Piezoresistive Sensors.
    Fekiri C; Kim HC; Lee IH
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33271994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Designing Metallic and Insulating Nanocrystal Heterostructures to Fabricate Highly Sensitive and Solution Processed Strain Gauges for Wearable Sensors.
    Lee WS; Lee SW; Joh H; Seong M; Kim H; Kang MS; Cho KH; Sung YM; Oh SJ
    Small; 2017 Dec; 13(47):. PubMed ID: 29078023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene ink for 3D extrusion micro printing of chemo-resistive sensing devices for volatile organic compound detection.
    Hassan K; Tung TT; Stanley N; Yap PL; Farivar F; Rastin H; Nine MJ; Losic D
    Nanoscale; 2021 Mar; 13(10):5356-5368. PubMed ID: 33660735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics.
    Xu M; Qi J; Li F; Zhang Y
    Nanoscale; 2018 Mar; 10(11):5264-5271. PubMed ID: 29498389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.
    Amjadi M; Turan M; Clementson CP; Sitti M
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5618-26. PubMed ID: 26842553
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-Property Relationships in Graphene-Based Strain and Pressure Sensors for Potential Artificial Intelligence Applications.
    Luo Z; Hu X; Tian X; Luo C; Xu H; Li Q; Li Q; Zhang J; Qiao F; Wu X; Borisenko VE; Chu J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30871069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Negative Gauge Factor Piezoresistive Composites Based on Polymers Filled with MoS
    Biccai S; Boland CS; O'Driscoll DP; Harvey A; Gabbett C; O'Suilleabhain DR; Griffin AJ; Li Z; Young RJ; Coleman JN
    ACS Nano; 2019 Jun; 13(6):6845-6855. PubMed ID: 31199128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wearable and Transparent Capacitive Strain Sensor with High Sensitivity Based on Patterned Ag Nanowire Networks.
    Kim SR; Kim JH; Park JW
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26407-26416. PubMed ID: 28730804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors.
    Sahatiya P; Badhulika S
    Nanotechnology; 2017 Mar; 28(9):095501. PubMed ID: 28071605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility.
    Zhao W; Rovere T; Weerawarne D; Osterhoudt G; Kang N; Joseph P; Luo J; Shim B; Poliks M; Zhong CJ
    ACS Nano; 2015 Jun; 9(6):6168-77. PubMed ID: 26034999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epoxy Composites with Reduced Graphene Oxide-Cellulose Nanofiber Hybrid Filler and Their Application in Concrete Strain and Crack Monitoring.
    Wu Z; Wei J; Dong R; Chen H
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene nanoparticle strain sensors with modulated sensitivity through tunneling types transition.
    Gao F; Qiu Y; Wei S; Yang H; Zhang J; Hu P
    Nanotechnology; 2019 Oct; 30(42):425501. PubMed ID: 31247593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon nanotube thin film strain sensors: comparison between experimental tests and numerical simulations.
    Lee BM; Loh KJ
    Nanotechnology; 2017 Apr; 28(15):155502. PubMed ID: 28244878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.