These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 3385665)
1. Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents. Hennig RM J Comp Physiol A; 1988 May; 163(1):135-43. PubMed ID: 3385665 [TBL] [Abstract][Full Text] [Related]
2. Ultrastructure of synaptic contacts between identified neurons of the auditory pathway in Gryllus bimaculatus DeGeer. Hirtz R; Wiese K J Comp Neurol; 1997 Sep; 386(3):347-57. PubMed ID: 9303422 [TBL] [Abstract][Full Text] [Related]
3. Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets (Teleogryllus oceanicus). Faulkes Z; Pollack GS J Neurophysiol; 2000 Sep; 84(3):1247-55. PubMed ID: 10979999 [TBL] [Abstract][Full Text] [Related]
4. Age-dependent occurrence of an ascending axon on the omega neuron of the cricket, Teleogryllus oceanicus. Atkins G; Pollack GS J Comp Neurol; 1986 Jan; 243(4):527-34. PubMed ID: 3950084 [TBL] [Abstract][Full Text] [Related]
5. Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. Stritih N; Stumpner A Zoology (Jena); 2009; 112(1):48-68. PubMed ID: 18835145 [TBL] [Abstract][Full Text] [Related]
6. Corollary discharge inhibition of ascending auditory neurons in the stridulating cricket. Poulet JF; Hedwig B J Neurosci; 2003 Jun; 23(11):4717-25. PubMed ID: 12805311 [TBL] [Abstract][Full Text] [Related]
7. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus. Pallas SL; Hoy RR J Comp Neurol; 1986 Jun; 248(3):348-59. PubMed ID: 3722462 [TBL] [Abstract][Full Text] [Related]
8. Distribution of synapses on two ascending interneurones carrying frequency-specific information in the auditory system of the cricket: evidence for GABAergic inputs. Hardt M; Watson AH J Comp Neurol; 1994 Jul; 345(4):481-95. PubMed ID: 7962696 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of frequency-specific responses of omega neuron 1 in crickets (Teleogryllus oceanicus): a polysynaptic pathway for song? Faulkes Z; Pollack GS J Exp Biol; 2001 Apr; 204(Pt 7):1295-305. PubMed ID: 11249839 [TBL] [Abstract][Full Text] [Related]
10. Correlations between structure, topographic arrangement, and spectral sensitivity of sound-sensitive interneurons in crickets. Atkins G; Pollack GS J Comp Neurol; 1987 Dec; 266(3):398-412. PubMed ID: 3693618 [TBL] [Abstract][Full Text] [Related]
11. Morphology and physiology of auditory and vibratory ascending interneurones in bushcrickets. Nebeling B J Exp Zool; 2000 Feb; 286(3):219-30. PubMed ID: 10653961 [TBL] [Abstract][Full Text] [Related]
12. Effect of auditory deafferentation on the synaptic connectivity of a pair of identified interneurons in adult field crickets. Brodfuehrer PD; Hoy RR J Neurobiol; 1988 Jan; 19(1):17-38. PubMed ID: 3346652 [TBL] [Abstract][Full Text] [Related]
13. Phonotactic steering and representation of directional information in the ascending auditory pathway of a cricket. Lv M; Zhang X; Hedwig B J Neurophysiol; 2020 Mar; 123(3):865-875. PubMed ID: 31913780 [TBL] [Abstract][Full Text] [Related]
14. Selective processing of calling songs by auditory interneurons in the female cricket, Gryllus pennsylvanicus: possible roles in behavior. Jeffery J; Navia B; Atkins G; Stout J J Exp Zool A Comp Exp Biol; 2005 May; 303(5):377-92. PubMed ID: 15828009 [TBL] [Abstract][Full Text] [Related]
15. Diversity of intersegmental auditory neurons in a bush cricket. Stumpner A; Molina J J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1359-76. PubMed ID: 16964494 [TBL] [Abstract][Full Text] [Related]
16. Physiology and tonotopic organization of auditory receptors in the cricket Gryllus bimaculatus DeGeer. Oldfield BP; Kleindienst HU; Huber F J Comp Physiol A; 1986 Oct; 159(4):457-64. PubMed ID: 3783498 [TBL] [Abstract][Full Text] [Related]
17. A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: evidence for retrograde control of facilitation. Davis GW; Murphey RK J Neurosci; 1993 Sep; 13(9):3827-38. PubMed ID: 8366348 [TBL] [Abstract][Full Text] [Related]
19. Dendritic sprouting and compensatory synaptogenesis in an identified interneuron follow auditory deprivation in a cricket. Hoy RR; Nolen TG; Casaday GC Proc Natl Acad Sci U S A; 1985 Nov; 82(22):7772-6. PubMed ID: 3865195 [TBL] [Abstract][Full Text] [Related]
20. Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats. Fullard JH; Ratcliffe JM; Guignion C J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jul; 191(7):605-18. PubMed ID: 15886992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]