BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33856771)

  • 1. Dreams, False Starts, Dead Ends, and Redemption: A Chronicle of the Evolution of a Chemoinformatic Workflow for the Optimization of Enantioselective Catalysts.
    Rinehart NI; Zahrt AF; Henle JJ; Denmark SE
    Acc Chem Res; 2021 May; 54(9):2041-2054. PubMed ID: 33856771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning.
    Zahrt AF; Henle JJ; Rose BT; Wang Y; Darrow WT; Denmark SE
    Science; 2019 Jan; 363(6424):. PubMed ID: 30655414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Computer-Guided Workflow for Catalyst Optimization. Descriptor Validation, Subset Selection, and Training Set Analysis.
    Henle JJ; Zahrt AF; Rose BT; Darrow WT; Wang Y; Denmark SE
    J Am Chem Soc; 2020 Jul; 142(26):11578-11592. PubMed ID: 32568531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iterative Supervised Principal Component Analysis Driven Ligand Design for Regioselective Ti-Catalyzed Pyrrole Synthesis.
    See XY; Wen X; Wheeler TA; Klein CK; Goodpaster JD; Reiner BR; Tonks IA
    ACS Catal; 2020 Nov; 10(22):13504-13517. PubMed ID: 34327040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data Science Meets Physical Organic Chemistry.
    Crawford JM; Kingston C; Toste FD; Sigman MS
    Acc Chem Res; 2021 Aug; ():. PubMed ID: 34351757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Data-Driven Workflow for Assigning and Predicting Generality in Asymmetric Catalysis.
    Betinol IO; Lai J; Thakur S; Reid JP
    J Am Chem Soc; 2023 Jun; 145(23):12870-12883. PubMed ID: 37266999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palladium(II)-Catalyzed Enantioselective Reactions Using COP Catalysts.
    Cannon JS; Overman LE
    Acc Chem Res; 2016 Oct; 49(10):2220-2231. PubMed ID: 27689745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pursuing DNA catalysts for protein modification.
    Silverman SK
    Acc Chem Res; 2015 May; 48(5):1369-79. PubMed ID: 25939889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building a Toolbox for the Analysis and Prediction of Ligand and Catalyst Effects in Organometallic Catalysis.
    Durand DJ; Fey N
    Acc Chem Res; 2021 Feb; 54(4):837-848. PubMed ID: 33533587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback in Flow for Accelerated Reaction Development.
    Reizman BJ; Jensen KF
    Acc Chem Res; 2016 Sep; 49(9):1786-96. PubMed ID: 27525813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral 1,3,2-Oxazaborolidine Catalysts for Enantioselective Photochemical Reactions.
    Schwinger DP; Bach T
    Acc Chem Res; 2020 Sep; 53(9):1933-1943. PubMed ID: 32880165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transferrable selectivity profiles enable prediction in synergistic catalyst space.
    Kuang Y; Lai J; Reid JP
    Chem Sci; 2023 Feb; 14(7):1885-1895. PubMed ID: 36819850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Reaction Yields via Supervised Learning.
    Żurański AM; Martinez Alvarado JI; Shields BJ; Doyle AG
    Acc Chem Res; 2021 Apr; 54(8):1856-1865. PubMed ID: 33788552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-Driven Multi-Objective Optimization Tactics for Catalytic Asymmetric Reactions Using Bisphosphine Ligands.
    Dotson JJ; van Dijk L; Timmerman JC; Grosslight S; Walroth RC; Gosselin F; Püntener K; Mack KA; Sigman MS
    J Am Chem Soc; 2023 Jan; 145(1):110-121. PubMed ID: 36574729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.
    Sunoj RB
    Acc Chem Res; 2016 May; 49(5):1019-28. PubMed ID: 27101013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Studies Inform Design of Improved Ti(salen) Catalysts for Enantioselective [3 + 2] Cycloaddition.
    Robinson SG; Wu X; Jiang B; Sigman MS; Lin S
    J Am Chem Soc; 2020 Oct; 142(43):18471-18482. PubMed ID: 33064948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensembles of Metastable States Govern Heterogeneous Catalysis on Dynamic Interfaces.
    Zhang Z; Zandkarimi B; Alexandrova AN
    Acc Chem Res; 2020 Feb; 53(2):447-458. PubMed ID: 31977181
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.