These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33857218)

  • 1. Biogenic copper nanoparticles from Avicennia marina leaves: Impact on seed germination, detoxification enzymes, chlorophyll content and uptake by wheat seedlings.
    Essa HL; Abdelfattah MS; Marzouk AS; Shedeed Z; Guirguis HA; El-Sayed MMH
    PLoS One; 2021; 16(4):e0249764. PubMed ID: 33857218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L.
    Li X; Ma H; Jia P; Wang J; Jia L; Zhang T; Yang Y; Chen H; Wei X
    Ecotoxicol Environ Saf; 2012 Dec; 86():47-53. PubMed ID: 23025893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings.
    Xu Y; Yu W; Ma Q; Zhou H; Jiang C
    Ecotoxicol Environ Saf; 2017 Aug; 142():250-256. PubMed ID: 28427033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene.
    Zhu J; Zou Z; Shen Y; Li J; Shi S; Han S; Zhan X
    Environ Pollut; 2019 Apr; 247():108-117. PubMed ID: 30669078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The physiological effect of organophosphate flame retardants (OPFRs) on wheat (Triticum aestivum L.) seed germination and seedling growth under the presence of copper.
    Deng D; Wang J; Xu S; Sun Y; Shi G; Wang H; Wang X
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):70109-70120. PubMed ID: 37147540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Cu
    Guo W; Wang N; Zhang KY; Song PP; Ma ZQ
    Ying Yong Sheng Tai Xue Bao; 2024 Mar; 35(3):721-730. PubMed ID: 38646760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc oxide nano-fertilizer differentially effect on morphological and physiological identity of redox-enzymes and biochemical attributes in wheat (Triticum aestivum L.).
    Nazir MA; Hasan M; Mustafa G; Tariq T; Ahmed MM; Golzari Dehno R; Ghorbanpour M
    Sci Rep; 2024 Jun; 14(1):13091. PubMed ID: 38849601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of arsenic on seed germination and physiological activities of wheat seedlings.
    Li CX; Feng SL; Shao Y; Jiang LN; Lu XY; Hou XL
    J Environ Sci (China); 2007; 19(6):725-32. PubMed ID: 17969647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MgONPs Can Boost Plant Growth: Evidence from Increased Seedling Growth, Morpho-Physiological Activities, and Mg Uptake in Tobacco (
    Cai L; Liu M; Liu Z; Yang H; Sun X; Chen J; Xiang S; Ding W
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30572666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid.
    Yan Z; Li X; Chen J; Tam NF
    Ecotoxicol Environ Saf; 2015 Mar; 113():124-32. PubMed ID: 25497768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous exposure of wheat (Triticum aestivum L.) to CuO and S nanoparticles alleviates toxicity by reducing Cu accumulation and modulating antioxidant response.
    Huang G; Zuverza-Mena N; White JC; Hu H; Xing B; Dhankher OP
    Sci Total Environ; 2022 Sep; 839():156285. PubMed ID: 35636547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive zinc, iron, and copper-induced phytotoxicity in wheat roots.
    Yang Y; Ma T; Ding F; Ma H; Duan X; Gao T; Yao J
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):395-404. PubMed ID: 27726077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of wheat seed germination and seedling growth under copper stress.
    Singh D; Nath K; Sharma YK
    J Environ Biol; 2007 Apr; 28(2 Suppl):409-14. PubMed ID: 17929758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.).
    Li R; He J; Xie H; Wang W; Bose SK; Sun Y; Hu J; Yin H
    Int J Biol Macromol; 2019 Apr; 126():91-100. PubMed ID: 30557637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing physio-biochemical characteristics in okra genotypes through seed priming with biogenic zinc oxide nanoparticles synthesized from halophytic plant extracts.
    Ramzan M; Parveen M; Naz G; Sharif HMA; Nazim M; Aslam S; Hussain A; Rahimi M; Alamer KH
    Sci Rep; 2024 Oct; 14(1):23753. PubMed ID: 39390085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress.
    Xin X; Zhao F; Rho JY; Goodrich SL; Sumerlin BS; He Z
    Sci Total Environ; 2020 Nov; 745():141055. PubMed ID: 32736110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the role of nitric oxide in mitigation of systemic fungicide induced growth inhibition and oxidative damage in wheat.
    Touzout N; Mihoub A; Ahmad I; Jamal A; Danish S
    Chemosphere; 2024 Sep; 364():143046. PubMed ID: 39117087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Fe
    Gamito G; Monteiro CJ; Dias MC; Oliveira H; Silva AM; Faustino MAF; Silva S
    J Hazard Mater; 2024 Jun; 471():134243. PubMed ID: 38657506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.).
    Lian J; Wu J; Xiong H; Zeb A; Yang T; Su X; Su L; Liu W
    J Hazard Mater; 2020 Mar; 385():121620. PubMed ID: 31744724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure.
    Yasmeen F; Raja NI; Razzaq A; Komatsu S
    Biochim Biophys Acta; 2016 Nov; 1864(11):1586-98. PubMed ID: 27530299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.