Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33857600)

  • 1. A comparative study and evaluation of anti-EGFR nanobodies expressed in Pichia pastoris and Escherichia coli as antitumor moieties.
    Xi X; Sun W; Li H; Fan Q; Zhang X; Sun F
    Protein Expr Purif; 2021 Aug; 184():105888. PubMed ID: 33857600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models.
    Fan J; Zhuang X; Yang X; Xu Y; Zhou Z; Pan L; Chen S
    Signal Transduct Target Ther; 2021 Sep; 6(1):320. PubMed ID: 34475375
    [No Abstract]   [Full Text] [Related]  

  • 3. Preparation and characterization of humanized nanobodies targeting the dimer interface of epidermal growth factor receptor (EGFR).
    Zhu H; Zhao L; Li Z; Wen B; Qiu C; Liu M; Xu Z; Hu S; Li H
    Protein Expr Purif; 2019 May; 157():57-62. PubMed ID: 30735705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Camelid-derived heavy-chain nanobody against Clostridium botulinum neurotoxin E in Pichia pastoris.
    Baghban R; Gargari SL; Rajabibazl M; Nazarian S; Bakherad H
    Biotechnol Appl Biochem; 2016; 63(2):200-5. PubMed ID: 24673401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A camelid nanobody against EGFR was easily obtained through refolding of inclusion body expressed in Escherichia coli.
    Xu L; Song X; Jia L
    Biotechnol Appl Biochem; 2017 Nov; 64(6):895-901. PubMed ID: 28853185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanobodies targeting the interaction interface of programmed death receptor 1 (PD-1)/PD-1 ligand 1 (PD-1/PD-L1).
    Wen B; Zhao L; Wang Y; Qiu C; Xu Z; Huang K; Zhu H; Li Z; Li H
    Prep Biochem Biotechnol; 2020; 50(3):252-259. PubMed ID: 31799894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient constitutive expression system for Anti-CEACAM5 nanobody production in the yeast Pichia pastoris.
    Chen Q; Zhou Y; Yu J; Liu W; Li F; Xian M; Nian R; Song H; Feng D
    Protein Expr Purif; 2019 Mar; 155():43-47. PubMed ID: 30414968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and functional insight into anti-EGFR nanobody: Theranostic implications for malignancies.
    Tripathy RK; Pande AH
    Life Sci; 2024 May; 345():122593. PubMed ID: 38554946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient production of nanobodies against urease activity ofHelicobacter pylori in Pichia pastoris.
    Pourasadi S; Mousavi Gargari SL; Rajabibazl M; Nazarian S
    Turk J Med Sci; 2017 Apr; 47(2):695-701. PubMed ID: 28425268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high affinity nanobody against endothelin receptor type B: a new approach to the treatment of melanoma.
    Ji L; Dong C; Fan R; Qi S
    Mol Biol Rep; 2020 Mar; 47(3):2137-2147. PubMed ID: 32080807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of a mono-biotinylated EGFR nanobody in the E. coli periplasm using the pET22b vector.
    Noor A; Walser G; Wesseling M; Giron P; Laffra AM; Haddouchi F; De Grève J; Kronenberger P
    BMC Res Notes; 2018 Oct; 11(1):751. PubMed ID: 30348204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth.
    Roovers RC; Vosjan MJ; Laeremans T; el Khoulati R; de Bruin RC; Ferguson KM; Verkleij AJ; van Dongen GA; van Bergen en Henegouwen PM
    Int J Cancer; 2011 Oct; 129(8):2013-24. PubMed ID: 21520037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EGFR extracellular domain III expressed in Escherichia coli with SEP tag shows improved biophysical and functional properties and generate anti-sera inhibiting cancer cell growth.
    Brindha S; Kibria MG; Saotome T; Unzai S; Kuroda Y
    Biochem Biophys Res Commun; 2021 May; 555():121-127. PubMed ID: 33813270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of Single-Domain Antibodies in Pichia pastoris.
    Matsuzaki Y; Kajiwara K; Aoki W; Ueda M
    Methods Mol Biol; 2022; 2446():181-203. PubMed ID: 35157274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bispecific nanobody targeting the dimerization interface of epidermal growth factor receptor: Evidence for tumor suppressive actions in vitro and in vivo.
    Xu Z; Qiu C; Wen B; Wang S; Zhu L; Zhao L; Li H
    Biochem Biophys Res Commun; 2021 Apr; 548():78-83. PubMed ID: 33636638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering and characterization of GFP-targeting nanobody: Expression, purification, and post-translational modification analysis.
    Weng D; Yang L; Xie Y
    Protein Expr Purif; 2024 Sep; 221():106501. PubMed ID: 38782081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a novel anti-EGFR nanobody by phage display and its distinct paratope and epitope via homology modeling and molecular docking.
    Xi X; Sun W; Su H; Zhang X; Sun F
    Mol Immunol; 2020 Dec; 128():165-174. PubMed ID: 33130376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review).
    Yu S; Xiong G; Zhao S; Tang Y; Tang H; Wang K; Liu H; Lan K; Bi X; Duan S
    Int J Mol Med; 2021 Feb; 47(2):444-454. PubMed ID: 33416134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient growth inhibition of EGFR over-expressing tumor cells by an anti-EGFR nanobody.
    Omidfar K; Amjad Zanjani FS; Hagh AG; Azizi MD; Rasouli SJ; Kashanian S
    Mol Biol Rep; 2013 Dec; 40(12):6737-45. PubMed ID: 24052234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain swapping of complementarity-determining region in nanobodies produced by Pichia pastoris.
    Miura N; Miyamoto K; Ohtani Y; Yaginuma K; Aburaya S; Kitagawa Y; Aoki W; Ueda M
    AMB Express; 2019 Jul; 9(1):107. PubMed ID: 31309388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.