These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 33857600)
1. A comparative study and evaluation of anti-EGFR nanobodies expressed in Pichia pastoris and Escherichia coli as antitumor moieties. Xi X; Sun W; Li H; Fan Q; Zhang X; Sun F Protein Expr Purif; 2021 Aug; 184():105888. PubMed ID: 33857600 [TBL] [Abstract][Full Text] [Related]
2. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models. Fan J; Zhuang X; Yang X; Xu Y; Zhou Z; Pan L; Chen S Signal Transduct Target Ther; 2021 Sep; 6(1):320. PubMed ID: 34475375 [No Abstract] [Full Text] [Related]
3. Preparation and characterization of humanized nanobodies targeting the dimer interface of epidermal growth factor receptor (EGFR). Zhu H; Zhao L; Li Z; Wen B; Qiu C; Liu M; Xu Z; Hu S; Li H Protein Expr Purif; 2019 May; 157():57-62. PubMed ID: 30735705 [TBL] [Abstract][Full Text] [Related]
4. Camelid-derived heavy-chain nanobody against Clostridium botulinum neurotoxin E in Pichia pastoris. Baghban R; Gargari SL; Rajabibazl M; Nazarian S; Bakherad H Biotechnol Appl Biochem; 2016; 63(2):200-5. PubMed ID: 24673401 [TBL] [Abstract][Full Text] [Related]
5. A camelid nanobody against EGFR was easily obtained through refolding of inclusion body expressed in Escherichia coli. Xu L; Song X; Jia L Biotechnol Appl Biochem; 2017 Nov; 64(6):895-901. PubMed ID: 28853185 [TBL] [Abstract][Full Text] [Related]
6. Nanobodies targeting the interaction interface of programmed death receptor 1 (PD-1)/PD-1 ligand 1 (PD-1/PD-L1). Wen B; Zhao L; Wang Y; Qiu C; Xu Z; Huang K; Zhu H; Li Z; Li H Prep Biochem Biotechnol; 2020; 50(3):252-259. PubMed ID: 31799894 [TBL] [Abstract][Full Text] [Related]
7. An efficient constitutive expression system for Anti-CEACAM5 nanobody production in the yeast Pichia pastoris. Chen Q; Zhou Y; Yu J; Liu W; Li F; Xian M; Nian R; Song H; Feng D Protein Expr Purif; 2019 Mar; 155():43-47. PubMed ID: 30414968 [TBL] [Abstract][Full Text] [Related]
8. Molecular and functional insight into anti-EGFR nanobody: Theranostic implications for malignancies. Tripathy RK; Pande AH Life Sci; 2024 May; 345():122593. PubMed ID: 38554946 [TBL] [Abstract][Full Text] [Related]
9. Efficient production of nanobodies against urease activity ofHelicobacter pylori in Pichia pastoris. Pourasadi S; Mousavi Gargari SL; Rajabibazl M; Nazarian S Turk J Med Sci; 2017 Apr; 47(2):695-701. PubMed ID: 28425268 [TBL] [Abstract][Full Text] [Related]
10. A high affinity nanobody against endothelin receptor type B: a new approach to the treatment of melanoma. Ji L; Dong C; Fan R; Qi S Mol Biol Rep; 2020 Mar; 47(3):2137-2147. PubMed ID: 32080807 [TBL] [Abstract][Full Text] [Related]
11. Production of a mono-biotinylated EGFR nanobody in the E. coli periplasm using the pET22b vector. Noor A; Walser G; Wesseling M; Giron P; Laffra AM; Haddouchi F; De Grève J; Kronenberger P BMC Res Notes; 2018 Oct; 11(1):751. PubMed ID: 30348204 [TBL] [Abstract][Full Text] [Related]
12. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Roovers RC; Vosjan MJ; Laeremans T; el Khoulati R; de Bruin RC; Ferguson KM; Verkleij AJ; van Dongen GA; van Bergen en Henegouwen PM Int J Cancer; 2011 Oct; 129(8):2013-24. PubMed ID: 21520037 [TBL] [Abstract][Full Text] [Related]
13. EGFR extracellular domain III expressed in Escherichia coli with SEP tag shows improved biophysical and functional properties and generate anti-sera inhibiting cancer cell growth. Brindha S; Kibria MG; Saotome T; Unzai S; Kuroda Y Biochem Biophys Res Commun; 2021 May; 555():121-127. PubMed ID: 33813270 [TBL] [Abstract][Full Text] [Related]
14. Production of Single-Domain Antibodies in Pichia pastoris. Matsuzaki Y; Kajiwara K; Aoki W; Ueda M Methods Mol Biol; 2022; 2446():181-203. PubMed ID: 35157274 [TBL] [Abstract][Full Text] [Related]
15. A bispecific nanobody targeting the dimerization interface of epidermal growth factor receptor: Evidence for tumor suppressive actions in vitro and in vivo. Xu Z; Qiu C; Wen B; Wang S; Zhu L; Zhao L; Li H Biochem Biophys Res Commun; 2021 Apr; 548():78-83. PubMed ID: 33636638 [TBL] [Abstract][Full Text] [Related]
16. Engineering and characterization of GFP-targeting nanobody: Expression, purification, and post-translational modification analysis. Weng D; Yang L; Xie Y Protein Expr Purif; 2024 Sep; 221():106501. PubMed ID: 38782081 [TBL] [Abstract][Full Text] [Related]
17. Identification of a novel anti-EGFR nanobody by phage display and its distinct paratope and epitope via homology modeling and molecular docking. Xi X; Sun W; Su H; Zhang X; Sun F Mol Immunol; 2020 Dec; 128():165-174. PubMed ID: 33130376 [TBL] [Abstract][Full Text] [Related]
18. Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review). Yu S; Xiong G; Zhao S; Tang Y; Tang H; Wang K; Liu H; Lan K; Bi X; Duan S Int J Mol Med; 2021 Feb; 47(2):444-454. PubMed ID: 33416134 [TBL] [Abstract][Full Text] [Related]
19. Screening, expression and anti-tumor functional identification of anti-LAG-3 nanobodies. Jiang D; Chen R; Wang L; Xu G Protein Expr Purif; 2024 Oct; 222():106522. PubMed ID: 38851552 [TBL] [Abstract][Full Text] [Related]