These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 33857894)
1. Polyhydroxyalkanoates production from fermented domestic wastewater using phototrophic mixed cultures. Almeida JR; Serrano E; Fernandez M; Fradinho JC; Oehmen A; Reis MAM Water Res; 2021 Jun; 197():117101. PubMed ID: 33857894 [TBL] [Abstract][Full Text] [Related]
2. Ammonia impact on the selection of a phototrophic - chemotrophic consortium for polyhydroxyalkanoates production under light-feast / dark-aerated-famine conditions. Almeida JR; León ES; Corona EL; Fradinho JC; Oehmen A; Reis MAM Water Res; 2023 Oct; 244():120450. PubMed ID: 37574626 [TBL] [Abstract][Full Text] [Related]
3. Polyhydroxyalkanoates production in purple phototrophic bacteria ponds: A breakthrough in outdoor pilot-scale operation. Almeida JR; León ES; Rogalla F; Fradinho JC; Oehmen A; Reis MAM Sci Total Environ; 2024 Feb; 912():168899. PubMed ID: 38029992 [TBL] [Abstract][Full Text] [Related]
4. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities. Oliveira CS; Silva CE; Carvalho G; Reis MA N Biotechnol; 2017 Jul; 37(Pt A):69-79. PubMed ID: 27793692 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of Microbial Communities in Phototrophic Polyhydroxyalkanoate Accumulating Cultures. Almeida JR; Fradinho JC; Carvalho G; Oehmen A; Reis MAM Microorganisms; 2022 Feb; 10(2):. PubMed ID: 35208806 [TBL] [Abstract][Full Text] [Related]
6. Beyond feast and famine: Selecting a PHA accumulating photosynthetic mixed culture in a permanent feast regime. Fradinho JC; Reis MAM; Oehmen A Water Res; 2016 Nov; 105():421-428. PubMed ID: 27664543 [TBL] [Abstract][Full Text] [Related]
7. High rate selection of PHA accumulating mixed cultures in sequencing batch reactors with uncoupled carbon and nitrogen feeding. Lorini L; di Re F; Majone M; Valentino F N Biotechnol; 2020 May; 56():140-148. PubMed ID: 32017996 [TBL] [Abstract][Full Text] [Related]
8. Improving polyhydroxyalkanoates production in phototrophic mixed cultures by optimizing accumulator reactor operating conditions. Fradinho JC; Oehmen A; Reis MAM Int J Biol Macromol; 2019 Apr; 126():1085-1092. PubMed ID: 30610947 [TBL] [Abstract][Full Text] [Related]
9. Effect of the organic loading rate on the PHA-storing microbiome in sequencing batch reactors operated with uncoupled carbon and nitrogen feeding. Simona C; Laura L; Francesco V; Marianna V; Cristina MG; Barbara T; Mauro M; Simona R Sci Total Environ; 2022 Jun; 825():153995. PubMed ID: 35192819 [TBL] [Abstract][Full Text] [Related]
10. Effect of dark/light periods on the polyhydroxyalkanoate production of a photosynthetic mixed culture. Fradinho JC; Oehmen A; Reis MA Bioresour Technol; 2013 Nov; 148():474-9. PubMed ID: 24077157 [TBL] [Abstract][Full Text] [Related]
11. The impact of biomass withdrawal strategy on the biomass selection and polyhydroxyalkanoates accumulation of mixed microbial cultures. Cruz RAP; Oehmen A; Reis MAM N Biotechnol; 2022 Jan; 66():8-15. PubMed ID: 34450342 [TBL] [Abstract][Full Text] [Related]
12. Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by PHA-storing denitrifiers integrating PHA accumulation with nitrate removal. Tu W; Zhang D; Wang H; Lin Z Bioresour Technol; 2019 Nov; 292():121895. PubMed ID: 31398550 [TBL] [Abstract][Full Text] [Related]
13. Polyhydroxyalkanoates production from ethanol- and lactate-rich fermentate of confectionary industry effluents. Rangel C; Carvalho G; Oehmen A; Frison N; Lourenço ND; Reis MAM Int J Biol Macromol; 2023 Feb; 229():713-723. PubMed ID: 36587645 [TBL] [Abstract][Full Text] [Related]
14. PHA and EPS production from industrial wastewater by conventional activated sludge, membrane bioreactor and aerobic granular sludge technologies: A comprehensive comparison. Traina F; Capodici M; Torregrossa M; Viviani G; Corsino SF Chemosphere; 2024 May; 355():141768. PubMed ID: 38537712 [TBL] [Abstract][Full Text] [Related]
15. Strategies for the valorisation of a protein-rich saline waste stream into polyhydroxyalkanoates (PHA). Roibás-Rozas A; Val Del Rio A; Hospido A; Mosquera-Corral A Bioresour Technol; 2021 Aug; 334():124964. PubMed ID: 33958271 [TBL] [Abstract][Full Text] [Related]
16. Effect of the temperature in a mixed culture pilot scale aerobic process for food waste and sewage sludge conversion into polyhydroxyalkanoates. Valentino F; Lorini L; Gottardo M; Pavan P; Majone M J Biotechnol; 2020 Nov; 323():54-61. PubMed ID: 32763260 [TBL] [Abstract][Full Text] [Related]
17. Optimization of an enriched mixed culture to increase PHA accumulation using industrial saline complex wastewater as a substrate. Argiz L; Fra-Vázquez A; Del Río ÁV; Mosquera-Corral A Chemosphere; 2020 May; 247():125873. PubMed ID: 31972488 [TBL] [Abstract][Full Text] [Related]
18. Beyond PHA: Stimulating intracellular accumulation of added-value compounds in mixed microbial cultures. Pinto-Ibieta F; Serrano A; Cea M; Ciudad G; Fermoso FG Bioresour Technol; 2021 Oct; 337():125381. PubMed ID: 34120059 [TBL] [Abstract][Full Text] [Related]
19. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels. Valentino F; Karabegovic L; Majone M; Morgan-Sagastume F; Werker A Water Res; 2015 Jun; 77():49-63. PubMed ID: 25846983 [TBL] [Abstract][Full Text] [Related]
20. Effects of the Organic Loading Rate on Polyhydroxyalkanoate Production from Sugarcane Stillage by Mixed Microbial Cultures. de Oliveira GHD; Niz MYK; Zaiat M; Rodrigues JAD Appl Biochem Biotechnol; 2019 Dec; 189(4):1039-1055. PubMed ID: 31165392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]