BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33858136)

  • 1. Energy of Concert and Origins of Regioselectivity for 1,3-Dipolar Cycloadditions of Diazomethane.
    Chen S; Hu T; Houk KN
    J Org Chem; 2021 May; 86(9):6840-6846. PubMed ID: 33858136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (3 + 2) cycloaddition reaction of 7-isopropylidenebenzonorbornadiene and diazomethane derivatives: A theoretical study.
    Pipim GB; Tia R; Adei E
    J Mol Graph Model; 2020 Dec; 101():107713. PubMed ID: 32882633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How torsional effects cause attack at sterically crowded concave faces of bicyclic alkenes.
    Lopez SA; Pourati M; Gais HJ; Houk KN
    J Org Chem; 2014 Sep; 79(17):8304-12. PubMed ID: 25068678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Nitrilimine-Alkene Cycloaddition Regioselectivity Rationalized by Density Functional Theory Reactivity Indices.
    Molteni G; Ponti A
    Molecules; 2017 Jan; 22(2):. PubMed ID: 28134786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is DFT Accurate Enough to Calculate Regioselectivity? The Case of 1,3-Dipolar Cycloaddition of Azide to Alkynes and Alkenes.
    Molteni G; Ponti A
    Chemphyschem; 2023 Jun; 24(12):e202300114. PubMed ID: 36896728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of trifluoromethylated isoxazolidines: 1,3-dipolar cycloaddition of nitrosoarenes, (trifluoromethyl)diazomethane, and alkenes.
    Molander GA; Cavalcanti LN
    Org Lett; 2013 Jun; 15(12):3166-9. PubMed ID: 24490778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivities of multicomponent [4 + 2]/[3 + 2] cycloadditions of 3-nitroindole with substituted alkenes: a DFT analysis.
    Gérard H; Chataigner I
    J Org Chem; 2013 Sep; 78(18):9233-42. PubMed ID: 23915252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular mesoionics: understanding and controlling regioselectivity in 1,3-dipolar cycloadditions of Münchnone derivatives.
    Morin MS; St-Cyr DJ; Arndtsen BA; Krenske EH; Houk KN
    J Am Chem Soc; 2013 Nov; 135(46):17349-58. PubMed ID: 24134494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models.
    Ess DH; Houk KN
    J Am Chem Soc; 2008 Aug; 130(31):10187-98. PubMed ID: 18613669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origins of regioselectivity in 1,3-dipolar cycloadditions of nitrile oxides with alkynylboronates.
    Lin B; Yu P; He CQ; Houk KN
    Bioorg Med Chem; 2016 Oct; 24(20):4787-4790. PubMed ID: 27501912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Bond-Nucleophilicity and -Electrophilicity Parameters: An Efficient Ordering System for 1,3-Dipolar Cycloadditions.
    Li L; Mayer RJ; Ofial AR; Mayr H
    J Am Chem Soc; 2023 Apr; 145(13):7416-7434. PubMed ID: 36952671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab Initio Study of the Regiochemistry of 1,3-Dipolar Cycloadditions. Reactions of Diazomethane and Formonitrile Oxide with Ethene, Propene, Acrylonitrile, and Methyl Vinyl Ether.
    Rastelli A; Gandolfi R; Sarzi Amadè M
    J Org Chem; 1998 Oct; 63(21):7425-7436. PubMed ID: 11672394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. anti-Diradical Formation in 1,3-Dipolar Cycloadditions of Nitrile Oxides to Acetylenes.
    Haberhauer G; Gleiter R; Woitschetzki S
    J Org Chem; 2015 Dec; 80(24):12321-32. PubMed ID: 26560849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation-strain analysis reveals unexpected origin of fast reactivity in heteroaromatic azadiene inverse-electron-demand diels-alder cycloadditions.
    Talbot A; Devarajan D; Gustafson SJ; Fernández I; Bickelhaupt FM; Ess DH
    J Org Chem; 2015 Jan; 80(1):548-58. PubMed ID: 25490250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cycloadditions of 16-Electron 1,3-Dipoles with Ethylene. A Density Functional and CCSD(T) Study.
    Su MD; Liao HY; Chung WS; Chu SY
    J Org Chem; 1999 Sep; 64(18):6710-6716. PubMed ID: 11674676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orbital signatures as a descriptor of regioselectivity and chemical reactivity: the role of the frontier orbitals on 1,3-dipolar cycloadditions.
    La Porta FA; Ramalho TC; Santiago RT; Rocha MV; da Cunha EF
    J Phys Chem A; 2011 Feb; 115(5):824-33. PubMed ID: 21222451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study.
    Schoenebeck F; Ess DH; Jones GO; Houk KN
    J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Exploration of Anomalous Regioselectivities in Cycloadditions of Ketenes to Oxazolines.
    Zhu L; Maskeri MA; Ramirez M; Le Bideau F; Ghosez L; Houk KN
    J Org Chem; 2022 Mar; 87(5):3613-3622. PubMed ID: 35076243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism and stereoselectivity of the stepwise 1,3-dipolar cycloadditions between a thiocarbonyl ylide and electron-deficient dipolarophiles: a computational investigation.
    Lan Y; Houk KN
    J Am Chem Soc; 2010 Dec; 132(50):17921-7. PubMed ID: 21121653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational study of the 1,3-dipolar cycloaddition between methyl 2-trifluorobutynoate and substituted azides in terms of reactivity indices and activation parameters.
    Salah M; Komiha N; Kabbaj OK; Ghailane R; Marakchi K
    J Mol Graph Model; 2017 May; 73():143-151. PubMed ID: 28279822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.