These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33858322)

  • 1. ChIP-BIT2: a software tool to detect weak binding events using a Bayesian integration approach.
    Chen X; Shi X; Neuwald AF; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Bioinformatics; 2021 Apr; 22(1):193. PubMed ID: 33858322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles.
    Chen X; Jung JG; Shajahan-Haq AN; Clarke R; Shih IeM; Wang Y; Magnani L; Wang TL; Xuan J
    Nucleic Acids Res; 2016 Apr; 44(7):e65. PubMed ID: 26704972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using CisGenome to analyze ChIP-chip and ChIP-seq data.
    Ji H; Jiang H; Ma W; Wong WH
    Curr Protoc Bioinformatics; 2011 Mar; Chapter 2():Unit2.13. PubMed ID: 21400695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data.
    Zhu LJ; Gazin C; Lawson ND; Pagès H; Lin SM; Lapointe DS; Green MR
    BMC Bioinformatics; 2010 May; 11():237. PubMed ID: 20459804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring direct DNA binding from ChIP-seq.
    Bailey TL; Machanick P
    Nucleic Acids Res; 2012 Sep; 40(17):e128. PubMed ID: 22610855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PeakAnalyzer: genome-wide annotation of chromatin binding and modification loci.
    Salmon-Divon M; Dvinge H; Tammoja K; Bertone P
    BMC Bioinformatics; 2010 Aug; 11():415. PubMed ID: 20691053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative analysis of ChIP-chip and ChIP-seq dataset.
    Zhu LJ
    Methods Mol Biol; 2013; 1067():105-24. PubMed ID: 23975789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. dPeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-Seq data.
    Chung D; Park D; Myers K; Grass J; Kiley P; Landick R; Keleş S
    PLoS Comput Biol; 2013; 9(10):e1003246. PubMed ID: 24146601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding ChIP-seq with a double-binding signal refines binding peaks to single-nucleotides and predicts cooperative interaction.
    Gomes AL; Abeel T; Peterson M; Azizi E; Lyubetskaya A; Carvalho L; Galagan J
    Genome Res; 2014 Oct; 24(10):1686-97. PubMed ID: 25024162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP.
    Mitra S; Biswas A; Narlikar L
    PLoS Comput Biol; 2018 Apr; 14(4):e1006090. PubMed ID: 29684008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A MAD-Bayes Algorithm for State-Space Inference and Clustering with Application to Querying Large Collections of ChIP-Seq Data Sets.
    Zuo C; Chen K; Keleş S
    J Comput Biol; 2017 Jun; 24(6):472-485. PubMed ID: 27835030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. diffReps: detecting differential chromatin modification sites from ChIP-seq data with biological replicates.
    Shen L; Shao NY; Liu X; Maze I; Feng J; Nestler EJ
    PLoS One; 2013; 8(6):e65598. PubMed ID: 23762400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ChIPulate: A comprehensive ChIP-seq simulation pipeline.
    Datta V; Hannenhalli S; Siddharthan R
    PLoS Comput Biol; 2019 Mar; 15(3):e1006921. PubMed ID: 30897079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enricherator: A Bayesian Method for Inferring Regularized Genome-wide Enrichments from Sequencing Count Data.
    Schroeder JW; Freddolino PL
    J Mol Biol; 2024 Sep; 436(17):168567. PubMed ID: 38583516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data.
    Jothi R; Cuddapah S; Barski A; Cui K; Zhao K
    Nucleic Acids Res; 2008 Sep; 36(16):5221-31. PubMed ID: 18684996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CSA: a web service for the complete process of ChIP-Seq analysis.
    Li M; Tang L; Wu FX; Pan Y; Wang J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 15):515. PubMed ID: 31874601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AREM: aligning short reads from ChIP-sequencing by expectation maximization.
    Newkirk D; Biesinger J; Chon A; Yokomori K; Xie X
    J Comput Biol; 2011 Nov; 18(11):1495-505. PubMed ID: 22035330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active promoters give rise to false positive 'Phantom Peaks' in ChIP-seq experiments.
    Jain D; Baldi S; Zabel A; Straub T; Becker PB
    Nucleic Acids Res; 2015 Aug; 43(14):6959-68. PubMed ID: 26117547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.