These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 33858333)
1. Temporal transcriptome profiling of developing seeds reveals candidate genes involved in oil accumulation in safflower (Carthamus tinctorius L.). Li D; Wang Q; Xu X; Yu J; Chen Z; Wei B; Wu W BMC Plant Biol; 2021 Apr; 21(1):181. PubMed ID: 33858333 [TBL] [Abstract][Full Text] [Related]
2. A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). Cao S; Zhou XR; Wood CC; Green AG; Singh SP; Liu L; Liu Q BMC Plant Biol; 2013 Jan; 13():5. PubMed ID: 23289946 [TBL] [Abstract][Full Text] [Related]
3. High level accumulation of gamma linolenic acid (C18:3Δ6.9,12 cis) in transgenic safflower (Carthamus tinctorius) seeds. Nykiforuk CL; Shewmaker C; Harry I; Yurchenko OP; Zhang M; Reed C; Oinam GS; Zaplachinski S; Fidantsef A; Boothe JG; Moloney MM Transgenic Res; 2012 Apr; 21(2):367-81. PubMed ID: 21853296 [TBL] [Abstract][Full Text] [Related]
4. Identification of genes associated with fatty acid biosynthesis based on 214 safflower core germplasm. Fan K; Qin Y; Hu X; Xu J; Ye Q; Zhang C; Ding Y; Li G; Chen Y; Liu J; Wang P; Hu Z; Yan X; Xiong H; Liu H; Qin R BMC Genomics; 2023 Dec; 24(1):763. PubMed ID: 38082219 [TBL] [Abstract][Full Text] [Related]
5. Devolopmental and growth temperature regulation of omega-3 fatty acid desaturase genes in safflower (Carthamus tinctorius L.). Guan LL; Wu W; Hu B; Li D; Chen JW; Hou K; Wang L Genet Mol Res; 2014 Aug; 13(3):6623-37. PubMed ID: 25177943 [TBL] [Abstract][Full Text] [Related]
6. The Carthamus tinctorius L. genome sequence provides insights into synthesis of unsaturated fatty acids. Dong Y; Wang X; Ahmad N; Sun Y; Wang Y; Liu X; Yao N; Jing Y; Du L; Li X; Wang N; Liu W; Wang F; Li X; Li H BMC Genomics; 2024 May; 25(1):510. PubMed ID: 38783193 [TBL] [Abstract][Full Text] [Related]
7. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids. Li H; Dong Y; Yang J; Liu X; Wang Y; Yao N; Guan L; Wang N; Wu J; Li X PLoS One; 2012; 7(2):e30987. PubMed ID: 22363528 [TBL] [Abstract][Full Text] [Related]
8. Nonsense-mediated mRNA degradation of CtFAD2-1 and development of a perfect molecular marker for olol mutation in high oleic safflower (Carthamus tinctorius L.). Liu Q; Cao S; Zhou XR; Wood C; Green A; Singh S Theor Appl Genet; 2013 Sep; 126(9):2219-31. PubMed ID: 23695179 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide analysis of CtNF-YB and lipid synthesis regulation of CtNF-YB12 in Carthamus tinctorius L. Deng S; Wang R; Tao C; Li L; Wang S; Jia C; Liu Y; Du R; Du L; Yang J Plant Cell Rep; 2023 Jan; 42(1):57-72. PubMed ID: 36309876 [TBL] [Abstract][Full Text] [Related]
10. The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. Lulin H; Xiao Y; Pei S; Wen T; Shangqin H PLoS One; 2012; 7(6):e38653. PubMed ID: 22723874 [TBL] [Abstract][Full Text] [Related]
11. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata). Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889 [TBL] [Abstract][Full Text] [Related]
13. Oil body bound oleosin-rhFGF9 fusion protein expressed in safflower (Carthamus tinctorius L.) stimulates hair growth and wound healing in mice. Cai J; Wen R; Li W; Wang X; Tian H; Yi S; Zhang L; Li X; Jiang C; Li H BMC Biotechnol; 2018 Aug; 18(1):51. PubMed ID: 30157831 [TBL] [Abstract][Full Text] [Related]
14. The chromosome-scale reference genome of safflower (Carthamus tinctorius) provides insights into linoleic acid and flavonoid biosynthesis. Wu Z; Liu H; Zhan W; Yu Z; Qin E; Liu S; Yang T; Xiang N; Kudrna D; Chen Y; Lee S; Li G; Wing RA; Liu J; Xiong H; Xia C; Xing Y; Zhang J; Qin R Plant Biotechnol J; 2021 Sep; 19(9):1725-1742. PubMed ID: 33768699 [TBL] [Abstract][Full Text] [Related]
15. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.). Siddiqi EH; Ashraf M; Al-Qurainy F; Akram NA J Sci Food Agric; 2011 Dec; 91(15):2785-93. PubMed ID: 21717466 [TBL] [Abstract][Full Text] [Related]
16. De Novo Sequencing and Analysis of the Safflower Transcriptome to Discover Putative Genes Associated with Safflor Yellow in Carthamus tinctorius L. Liu X; Dong Y; Yao N; Zhang Y; Wang N; Cui X; Li X; Wang Y; Wang F; Yang J; Guan L; Du L; Li H; Li X Int J Mol Sci; 2015 Oct; 16(10):25657-77. PubMed ID: 26516840 [TBL] [Abstract][Full Text] [Related]
17. Dynamic transcriptome analysis identifies genes related to fatty acid biosynthesis in the seeds of Prunus pedunculata Pall. Bao W; Ao D; Wang L; Ling Z; Chen M; Bai Y; Wuyun TN; Chen J; Zhang S; Li F BMC Plant Biol; 2021 Mar; 21(1):152. PubMed ID: 33761884 [TBL] [Abstract][Full Text] [Related]
18. Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in safflower (Carthamus tinctorius L.) under MeJA treatment. Chen J; Wang J; Wang R; Xian B; Ren C; Liu Q; Wu Q; Pei J BMC Plant Biol; 2020 Jul; 20(1):353. PubMed ID: 32727365 [TBL] [Abstract][Full Text] [Related]
19. Integrating molecular characterization and metabolites profile revealed CtCHI1's significant role in Carthamus tinctorius L. Guo D; Gao Y; Liu F; He B; Jia X; Meng F; Zhang H; Guo M BMC Plant Biol; 2019 Aug; 19(1):376. PubMed ID: 31455221 [TBL] [Abstract][Full Text] [Related]