These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33858917)

  • 1. Complete Genome Sequence of Rhodopseudomonas palustris RCB100, an Anoxygenic Phototroph That Degrades 3-Chlorobenzoate.
    Haq IU; Fixen KR
    Microbiol Resour Announc; 2021 Apr; 10(15):. PubMed ID: 33858917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of
    Haq IU; Christensen A; Fixen KR
    Appl Environ Microbiol; 2024 Feb; 90(2):e0210423. PubMed ID: 38206012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the Rhodopseudomonas palustris genome sequence to identify a single amino acid that contributes to the activity of a coenzyme A ligase with chlorinated substrates.
    Samanta SK; Harwood CS
    Mol Microbiol; 2005 Feb; 55(4):1151-9. PubMed ID: 15686561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris.
    Egland PG; Gibson J; Harwood CS
    Appl Environ Microbiol; 2001 Mar; 67(3):1396-9. PubMed ID: 11229940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Regulation of a Light-Harvesting Antenna Complex in an Anoxygenic Phototroph.
    Fixen KR; Oda Y; Harwood CS
    mBio; 2019 Nov; 10(6):. PubMed ID: 31772049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic and genetic sequence information of strains assigned to the genus
    Imhoff JF; Meyer TE; Kyndt J
    Int J Syst Evol Microbiol; 2020 Jun; 70(6):3932-3938. PubMed ID: 32496176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Disjointed Pathway for Malonate Degradation by Rhodopseudomonas palustris.
    Wang Z; Wen Q; Harwood CS; Liang B; Yang J
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional analysis of the phosphoenolpyruvate carboxylase gene from the purple nonsulfur bacterium Rhodopseudomonas palustris No. 7.
    Inui M; Dumay V; Zahn K; Yamagata H; Yukawa H
    J Bacteriol; 1997 Aug; 179(15):4942-5. PubMed ID: 9244286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete Genome Sequence of Rhodopseudomonas palustris CGA0092 and Corrections to the R. palustris CGA009 Genome Sequence.
    Mazny BE; Sheff OF; LaSarre B; McKinlay A; McKinlay JB
    Microbiol Resour Announc; 2023 May; 12(5):e0128522. PubMed ID: 37078874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic degradation of halogenated benzoic acids by photoheterotrophic bacteria.
    van der Woude BJ; de Boer M; van der Put NM; van der Geld FM; Prins RA; Gottschal JC
    FEMS Microbiol Lett; 1994 Jun; 119(1-2):199-207. PubMed ID: 8039661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phototrophic Lactate Utilization by
    Govindaraju A; McKinlay JB; LaSarre B
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anoxygenic degradation of aromatic substances by Rhodopseudomonas palustris.
    Khanna P; Rajkumar B; Jothikumar N
    Curr Microbiol; 1992 Aug; 25(2):63-7. PubMed ID: 1369192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of diversity among 3-chlorobenzoate-degrading strains of Rhodopseudomonas palustris.
    Oda Y; Meijer WG; Gibson JL; Gottschal JC; Forney LJ
    Microb Ecol; 2004 Jan; 47(1):68-79. PubMed ID: 15259271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoproteomic analysis of Rhodopseudomonas palustris reveals the role of pyruvate phosphate dikinase phosphorylation in lipid production.
    Hu CW; Lin MH; Huang HC; Ku WC; Yi TH; Tsai CF; Chen YJ; Sugiyama N; Ishihama Y; Juan HF; Wu SH
    J Proteome Res; 2012 Nov; 11(11):5362-75. PubMed ID: 23030682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Draft Whole-Genome Sequence of the Purple Nonsulfur Photosynthetic Bacterium
    Robertson S; Rayyan A; Meyer T; Kyndt J
    Microbiol Resour Announc; 2018 Oct; 7(15):. PubMed ID: 30533724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A polymorphism in the oxygen-responsive repressor PpsR2 confers a growth advantage to Rhodopseudomonas palustris under low light.
    Fixen KR; Harwood CS
    Photosynth Res; 2016 Aug; 129(2):199-204. PubMed ID: 27344652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of pII family (GlnK1, GlnK2, and GlnB) protein uridylylation in response to nitrogen availability for Rhodopseudomonas palustris.
    Connelly HM; Pelletier DA; Lu TY; Lankford PK; Hettich RL
    Anal Biochem; 2006 Oct; 357(1):93-104. PubMed ID: 16860774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics and Application of
    Li M; Ning P; Sun Y; Luo J; Yang J
    Front Bioeng Biotechnol; 2022; 10():897003. PubMed ID: 35646843
    [No Abstract]   [Full Text] [Related]  

  • 19. Molecular and functional characterization of the Rhodopseudomonas palustris no. 7 phosphoenolpyruvate carboxykinase gene.
    Inui M; Nakata K; Roh JH; Zahn K; Yukawa H
    J Bacteriol; 1999 May; 181(9):2689-96. PubMed ID: 10217755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Draft Whole-Genome Sequence of the Purple Photosynthetic Bacterium Rhodopseudomonas palustris XCP.
    Rayyan A; Meyer T; Kyndt J
    Microbiol Resour Announc; 2018 Aug; 7(4):. PubMed ID: 30533875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.